Table of Contents
ISRN Biomathematics
Volume 2012 (2012), Article ID 930130, 9 pages
http://dx.doi.org/10.5402/2012/930130
Research Article

Transmission Dynamics of Lymphatic Filariasis: A Mathematical Approach

Department of Mathematics, University of Zimbabwe, Box MP 167 Mount Pleasant, Harare, Zimbabwe

Received 27 August 2012; Accepted 19 September 2012

Academic Editors: G. Bocharov and M. T. Figge

Copyright © 2012 C. P. Bhunu and S. Mushayabasa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. World Health Organization, “Lymphatic filariasis: the disease and its control,” Fifth Report of the World Health Organization Technical Report Series 821–871, World Health Organization Expert Committee on Filariasis, 1992. View at Google Scholar
  2. J. H. F. Remme, P. de Raadt, and T. Godal, “Tropical health. The burden of tropical diseases,” Medical Journal of Australia, vol. 158, no. 7, pp. 465–469, 1993. View at Google Scholar · View at Scopus
  3. G. J. Weil and R. M. R. Ramzy, “Diagnostic tools for filariasis elimination programs,” Trends in Parasitology, vol. 23, no. 2, pp. 78–82, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Michael, D. A. P. Bundy, and B. T. Grenfell, “Re-assessing the global prevalence and distribution of lymphatic filariasis,” Parasitology, vol. 112, no. 4, pp. 409–428, 1996. View at Google Scholar · View at Scopus
  5. E. Michael and D. A. P. Bundy, “Global mapping of lymphatic filariasis,” Parasitology Today, vol. 13, no. 12, pp. 472–476, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. A. J. Terhell, M. Haarbrink, A. van den Biggelaar, A. Mangali, E. Sartono, and M. Yazdanbakhsh, “Long-term follow-up of treatment with diethylcarbamazine on anti-filarial IgG4: dosage, compliance, and differential patterns in adults and children,” American Journal of Tropical Medicine and Hygiene, vol. 68, no. 1, pp. 33–39, 2003. View at Google Scholar · View at Scopus
  7. W. D. Melrose, “Lymphatic filariasis: new insights into an old disease,” International Journal for Parasitology, vol. 32, no. 8, pp. 947–960, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. K. T. Cuenco, M. E. Halloran, J. Louis-Charles, and P. J. Lammie, “A family study of lymphedema of the leg in a lymphatic filariasis-endemic area,” American Journal of Tropical Medicine and Hygiene, vol. 70, no. 2, pp. 180–184, 2004. View at Google Scholar · View at Scopus
  9. G. Dreyer, J. Norões, J. Figueredo-Silva, and W. F. Piessens, “Pathogenesis of lymphatic disease in bancroftian filariasis: a clinical perspective,” Parasitology Today, vol. 16, no. 12, pp. 544–548, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. E. A. Ottesen and C. P. Ramachandran, “Lymphatic filariasis infection and disease: control strategies,” Parasitology Today, vol. 11, no. 4, pp. 129–131, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Z. G. Tan, “The elimination of lymphatic filariasis: a strategy for poverty alleviation and sustainable development-perspectives from the Philippines,” Filaria Journal, vol. 2, article 12, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. M. A. Appawu, S. K. Dadzie, A. Baffoe-Wilmot, and M. D. Wilson, “Lymphatic filariasis in Ghana: entomological investigation of transmission dynamics and intensity in communities served by irrigation systems in the Upper East Region of Ghana,” Tropical Medicine and International Health, vol. 6, no. 7, pp. 511–516, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. R. J. Smith and S. D. Hove-Musekwa, “Determining effective spraying periods to control malaria via indoor residual spraying in Sub-Saharan Africa,” Journal of Applied Mathematics and Decision Sciences, vol. 2008, Article ID 745463, 19 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. J. L. Aron, “Mathematical modeling of immunity to malaria,” Mathematical Biosciences, vol. 90, no. 1-2, pp. 385–396, 1988. View at Google Scholar · View at Scopus
  15. N. Chitnis, J. M. Cushing, and J. M. Hyman, “Bifurcation analysis of a mathematical model for malaria transmission,” SIAM Journal on Applied Mathematics, vol. 67, no. 1, pp. 24–45, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. H. M. Yang, “Malaria transmission model for different levels of acquired immunity and temperature-dependent parameters (vector),” Revista de Saude Publica, vol. 34, no. 3, pp. 223–231, 2000. View at Google Scholar · View at Scopus
  17. H. M. Yang and M. U. Ferreira, “Assessing the effects of global warming and local social and economic conditions on the malaria transmission,” Revista de Saude Publica, vol. 34, no. 3, pp. 214–222, 2000. View at Google Scholar · View at Scopus
  18. G. A. Ngwa, “Modelling the dynamics of endemic malaria in growing populations,” Discrete and Continuous Dynamical Systems B, vol. 4, no. 4, pp. 1173–1202, 2004. View at Google Scholar · View at Scopus
  19. G. A. Ngwa and W. S. Shu, “A mathematical model for endemic malaria with variable human and mosquito populations,” Mathematical and Computer Modelling, vol. 32, no. 7-8, pp. 747–763, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Swaminathan, S. P. Pani, R. Ravi, K. Krishnamoorthy, and P. K. Das, “Mathematical models for lymphatic filariasis transmission and control: challenges and prospects,” Parasites and Vectors, vol. 1, article 2, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. P. K. Das and S. Subramanian, “Modelling the epidemiology, transmission and control of lymphatic filariasis,” Annals of Tropical Medicine and Parasitology, vol. 96, pp. S153–164, 2002. View at Google Scholar · View at Scopus
  22. M. S. Chan, A. Srividya, R. A. Norman et al., “EPIFIL: a dynamic model of infection and disease in lymphatic filariasis,” American Journal of Tropical Medicine and Hygiene, vol. 59, no. 4, pp. 606–614, 1998. View at Google Scholar · View at Scopus
  23. R. A. Norman, M. S. Chan, A. Srividya et al., “EPIFIL: the development of an age-structured model for describing the transmission dynamics and control of lymphatic filariasis,” Epidemiology and Infection, vol. 124, no. 3, pp. 529–541, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. A. P. Plaisier, S. Subramanian, P. K. Das et al., “The LYMFASIM simulation program for modeling lymphatic filariasis and its control,” Methods of Information in Medicine, vol. 37, no. 1, pp. 97–108, 1998. View at Google Scholar · View at Scopus
  25. J. Labadin, C. M. L. Kon, and S. F. S. Juan, “Deterministic malaria transmission model with acquired immunity,” Proceedings of the World Congress on Engineering and Computer Science, October 2009.
  26. P. van den Driessche and J. Watmough, “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,” Mathematical Biosciences, vol. 180, pp. 29–48, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Carr, Applications Centre Manifold Theory, Springer, New York, NY, USA, 1981.
  28. C. Castillo-Chavez and B. Song, “Dynamical models of tuberculosis and their applications,” Mathematical Biosciences and Engineering, vol. 1, no. 2, pp. 361–404, 2004. View at Publisher · View at Google Scholar
  29. O. Sharomi and A. B. Gumel, “Curtailing smoking dynamics: a mathematical modeling approach,” Applied Mathematics and Computation, vol. 195, no. 2, pp. 475–499, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. S. M. Blower and H. Dowlatabadi, “Sensitivity and uncertainty analysis of complex models of disease trans- mission: an HIV model, as an example,” International Statistical Review, vol. 2, pp. 229–243, 1994. View at Google Scholar