Table of Contents
ISRN Dermatology
Volume 2012, Article ID 941465, 8 pages
Research Article

VEGF Is Involved in the Increase of Dermal Microvascular Permeability Induced by Tryptase

1Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai 200032, China
2Department of Cardiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200032, China

Received 5 February 2012; Accepted 13 March 2012

Academic Editors: E. Pasmatzi and A. Zalewska

Copyright © 2012 Qianming Bai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Tryptases are predominantly mast cell-specific serine proteases with pleiotropic biological activities and play a critical role in skin allergic reactions, which are manifested with rapid edema and increases of vascular permeability. The exact mechanisms of mast cell tryptase promoting vascular permeability, however, are unclear and, therefore, we investigated the effect and mechanism of tryptase or human mast cells (HMC-1) supernatant on the permeability of human dermal microvascular endothelial cells (HDMECs). Both tryptase and HMC-1 supernatant increased permeability of HDMECs significantly, which was resisted by tryptase inhibitor APC366 and partially reversed by anti-VEGF antibody and SU5614 (catalytic inhibitor of VEGFR). Furthermore, addition of tryptase to HDMECs caused a significant increase of mRNA and protein levels of VEGF and its receptors (Flt-1 and Flk-1) by Real-time RT-PCR and Western blot, respectively. These results strongly suggest an important role of VEGF on the permeability enhancement induced by tryptase, which may lead to novel means of controlling allergic reaction in skin.