Table of Contents
ISRN Toxicology
Volume 2012, Article ID 942804, 8 pages
http://dx.doi.org/10.5402/2012/942804
Research Article

Affinity and Matrix Effects in Measuring Fish Plasma Vitellogenin Using Immunosorbent Assays: Considerations for Aquatic Toxicologists

1Aquatic Toxicology Laboratory, Saint Cloud State University, WSB-273, 270 Fourth Avenue South, St. Cloud, MN 56301, USA
2Department of Biology, Normandale Community College, Bloomington, MN 55431, USA

Received 10 July 2012; Accepted 16 August 2012

Academic Editors: C. L. Chern, A. Cruz, V. Matozzo, and M. Pacheco

Copyright © 2012 Stephen E. Bartell and Heiko L. Schoenfuss. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. J. Korte, M. D. Kahl, K. M. Jensen et al., “Fathead minnow vitellogenin: complementary DNA sequence and messenger RNA and protein expression after 17β-estradiol treatment,” Environmental Toxicology and Chemistry, vol. 19, no. 4, pp. 972–981, 2000. View at Google Scholar · View at Scopus
  2. K. L. Thorpe, R. Benstead, T. H. Hutchinson, and C. R. Tyler, “Associations between altered vitellogenin concentrations and adverse health effects in fathead minnow (Pimephales promelas),” Aquatic Toxicology, vol. 85, no. 3, pp. 176–183, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. K. A. Kidd, P. J. Blanchfield, K. H. Mills et al., “Collapse of a fish population after exposure to a synthetic estrogen,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 21, pp. 8897–8901, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. D. H. Miller, K. M. Jensen, D. L. Villeneuve et al., “Linkage of biochemical responses to population-level effects: a case study with vitellogenin in the fathead minnow (Pimephales promelas),” Environmental Toxicology and Chemistry, vol. 26, no. 3, pp. 521–527, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Jobling, D. Casey, T. Rodgers-Gray et al., “Comparative responses of molluscs and fish to environmental estrogens and an estrogenic effluent,” Aquatic Toxicology, vol. 65, no. 2, pp. 205–220, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. J. C. Brodeur, K. B. Woodburn, and G. M. Klecka, “Potentiation of the vitellogenic response to 17α-ethinylestradiol by cortisol in the fathead minnow Pimephales promelas,” Environmental Toxicology and Chemistry, vol. 24, no. 5, pp. 1125–1132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. A. L. Filby, K. L. Thorp, and C. R. Tyler, “Multiple molecular effect pathways of an environmental oestrogen in fish,” Journal of Molecular Endocrinology, vol. 37, no. 1, pp. 121–134, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. D. L. Villeneuve, N. D. Mueller, D. Martinoviś et al., “Direct effects, compensation, and recovery in female fathead minnows exposed to a model aromatase inhibitor,” Environmental Health Perspectives, vol. 117, no. 4, pp. 624–631, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Garcia-Reyero, C. M. Lavelle, B. L. Escalon et al., “Behavioral and genomic impacts of a wastewater effluent on the fathead minnow,” Aquatic Toxicology, vol. 101, no. 1, pp. 38–48, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. Hemming, H. J. Allen, K. A. Thuesen et al., “Temporal and spatial variability in the estrogenicity of a municipal wastewater effluent,” Ecotoxicology and Environmental Safety, vol. 57, no. 3, pp. 303–310, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Garcia-Reyero, K. J. Kroll, L. Liu et al., “Gene expression responses in male fathead minnows exposed to binary mixtures of an estrogen and antiestrogen,” BMC Genomics, vol. 10, article 308, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. D. K. Gillespie and A. de Peyster, “Plasma calcium as a surrogate measure for vitellogenin in fathead minnows (Pimephales promelas),” Ecotoxicology and Environmental Safety, vol. 58, no. 1, pp. 90–95, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. D. L. Villeneuve, L. S. Blake, J. D. Brodin et al., “Effects of a 3β-hydroxysteroid dehydrogenase inhibitor, trilostane, on the fathead minnow reproductive axis,” Toxicological Sciences, vol. 104, no. 1, pp. 113–123, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Pawlowski, R. Van Aerle, C. R. Tyler, and T. Braunbeck, “Effects of 17α-ethinylestradiol in a fathead minnow (Pimephales promelas) gonadal recrudescence assay,” Ecotoxicology and Environmental Safety, vol. 57, no. 3, pp. 330–345, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. D. C. Robbins, L. Andersen, R. Bowsher et al., “Report of the American Diabetes Asociation's task force on standardization of the insulin assay,” Diabetes, vol. 45, no. 2, pp. 242–256, 1996. View at Google Scholar · View at Scopus
  16. D. Chevenne, F. Trivin, and D. Porquet, “Insulin assays and reference values,” Diabetes and Metabolism, vol. 25, no. 6, pp. 459–476, 1999. View at Google Scholar · View at Scopus
  17. P. J. Bingley, E. Bonifacio, and P. W. Mueller, “Diabetes antibody standardization program: first assay proficiency evaluation,” Diabetes, vol. 52, no. 5, pp. 1128–1136, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Marcovina, R. R. Bowsher, W. G. Miller et al., “Standardization of insulin immunoassays: report of the American Diabetes Association Workgroup,” Clinical Chemistry, vol. 53, no. 4, pp. 711–716, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Schlosser, P. W. Mueller, C. Törn, E. Bonifacio, and P. J. Bingley, “Diabetes Antibody Standardization Program: evaluation of assays for insulin autoantibodies,” Diabetologia, vol. 53, no. 12, pp. 2611–2620, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Mylchreest, S. Snajdr, J. J. Korte, and G. T. Ankley, “Comparison of ELISAs for detecting vitellogenin in the fathead minnow (Pimephales promelas),” Comparative Biochemistry and Physiology C, vol. 134, no. 2, pp. 251–257, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. C. R. Tyler, R. Van Aerle, and E. M. Santos, “ELISAs for detecting vitellogenin in the fathead minnow (Pimephales promelas)—a critical analysis,” Comparative Biochemistry and Physiology C, vol. 138, no. 4, pp. 531–532, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. J. J. Korte, E. Mylchreest, and G. T. Ankley, “Comparative evaluation of ELISAs for detecting vitellogenin in the fathead minnow (Pimephales promelas)—a response to Tyler et al,” Comparative Biochemistry and Physiology C, vol. 138, no. 4, pp. 533–536, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. B. M. Nilsen, K. Berg, J. K. Eidem et al., “Development of quantitative vitellogenin-ELISAs for fish test species used in endocrine disruptor screening,” Analytical and Bioanalytical Chemistry, vol. 378, no. 3, pp. 621–633, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. T. H. Hutchinson, G. T. Ankley, H. Segner, and C. R. Tyler, “Screening and testing for endocrine disruption in fish-biomarkers as “signposts,” not “traffic lights,” in risk assessment,” Environmental Health Perspectives, vol. 114, pp. 106–114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. US Environmental Protection Agency, “Comparative evaluation of vitellogenin methods,” Tech. Rep. 68-W-01-023, 2003. View at Google Scholar
  26. K. M. Jensen and G. T. Ankley, “Evaluation of a commercial kit for measuring vitellogenin in the fathead minnow (Pimephales promelas),” Ecotoxicology and Environmental Safety, vol. 64, no. 2, pp. 101–105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Kuby, Immunology, W.H. Freeman and Company, New York, NY, USA, 2nd edition, 1994.
  28. J. S. Denny, “Guidelines for the culture of fathead minnows Pimephales promelas for the use in toxicity tests,” EPA/600/3-87/001, 1987.
  29. L. G. Parks, A. O. Cheek, N. D. Denslow et al., “Fathead minnow (Pimephales promelas) vitellogenin: purification, characterization and quantitative immunoassay for the detection of estrogenic compounds,” Comparative Biochemistry and Physiology C, vol. 123, no. 2, pp. 113–125, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Wilkin, J. Palmer, A. Kurtz, E. Bonifacio, and J. L. Diaz, “The second International Workshop on the standardisation of Insulin Autoantibody (IAA) measurement,” Diabetologia, vol. 31, no. 7, pp. 449–450, 1988. View at Google Scholar · View at Scopus
  31. B. S. Dunbar and E. D. Schwoebel, “Preparation of polyclonal antibodies,” Methods in Enzymology, vol. 182, pp. 663–670, 1990. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Fenske, R. Van Aerle, S. Brack, C. R. Tyler, and H. Segner, “Development and validation of a homologous zebrafish (Danio rerio Hamilton-Buchanan) vitellogenin enzyme-linked immunosorbent assay (ELISA) and its application for studies on estrogenic chemicals,” Comparative Biochemistry and Physiology C, vol. 129, no. 3, pp. 217–232, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Hennies, M. Wiesmann, B. Allner, and H. Sauerwein, “Vitellogenin in carp (Cyprinus carpio) and perch (Perca fluviatilis): purification, characterization and development of an ELISA for the detection of estrogenic effects,” Science of the Total Environment, vol. 309, no. 1–3, pp. 93–103, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Liao, S. Jin, F.-X. Yang, Y. Hui, and Y. Xu, “An enzyme-linked immunosorbent assay for rare minnow (Gobiocypris rarus) vitellogenin and comparison of vitellogenin responses in rare minnow and zebrafish (Danio rerio),” Science of the Total Environment, vol. 364, no. 1-3, pp. 284–294, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. M. H. Morales, S. M. Pagán, and Y. Gómez, “Immunodissection of yolk lipovitellin (LV1) demonstrates the existence of different LV1-domains and suggests a complex family of vitellogenin genes in the lizard Anolis pulchellus,” Comparative Biochemistry and Physiology B, vol. 131, no. 3, pp. 339–348, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Nakamura, S. Yoshitome, I. Sugimoto et al., “Cellular distribution of Mr 25,000 protein, a protein partially overlapping phosvitin and lipovitellin 2 in vitellogenin B1, and yolk proteins in Xenopus laevis oocytes and embryos,” Comparative Biochemistry and Physiology A, vol. 148, no. 3, pp. 621–628, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. L. A. Norbeck and M. A. Sheridan, “An in vitro model for evaluating peripheral regulation of growth in fish: effects of 17β-estradiol and testosterone on the expression of growth hormone receptors, insulin-like growth factors, and insulin-like growth factor type 1 receptors in rainbow trout (Oncorhynchus mykiss),” General and Comparative Endocrinology, vol. 173, no. 2, pp. 270–280, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Harlow and D. Lane, Antibodies, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, NY, USA, 1988.
  39. C. Ankarberg-Lindgren and E. Norjavaara, “A purification step prior to commercial sensitive immunoassay is necessary to achieve clinical usefulness when quantifying serum 17β-estradiol in prepubertal children,” European Journal of Endocrinology, vol. 158, no. 1, pp. 117–124, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. Cayman Chemicals, Estradiol EIA Kit 582251, Ann Arbor, Mich, USA, 2011.
  41. R. E. Poms, E. Anklam, and M. Kuhn, “Polymerase chain reaction techniques for food allergen detection,” Journal of AOAC International, vol. 87, no. 6, pp. 1391–1397, 2004. View at Google Scholar · View at Scopus
  42. A. J. van Hengel, “Food allergen detection methods and the challenge to protect food-allergic consumers,” Analytical and Bioanalytical Chemistry, vol. 389, no. 1, pp. 111–118, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Monaci, M. Brohée, V. Tregoat, and A. van Hengel, “Influence of baking time and matrix effects on the detection of milk allergens in cookie model food system by ELISA,” Food Chemistry, vol. 127, no. 2, pp. 669–675, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. A. D. Biales, D. C. Bencic, J. L. Lazorchak, and D. L. Lattier, “A quantitative real-time polymerase chain reaction method for the analysis of vitellogenin transcripts in model and nonmodel fish species,” Environmental Toxicology and Chemistry, vol. 26, no. 12, pp. 2679–2686, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. J. H. Writer, L. B. Barber, G. K. Brown et al., “Anthropogenic tracers, endocrine disrupting chemicals, and endocrine disruption in Minnesota lakes,” Science of the Total Environment, vol. 409, no. 1, pp. 100–111, 2010. View at Publisher · View at Google Scholar · View at Scopus