Table of Contents
ISRN Agronomy
Volume 2012 (2012), Article ID 952196, 10 pages
http://dx.doi.org/10.5402/2012/952196
Research Article

The Use of ISSR and RAPD Markers for Genetic Diversity among South Tunisian Barley

Laboratoire d'Aridoculture et Cultures Oasiennes, Institut des Régions Arides de Médenine, 4119 Médenine, Tunisia

Received 20 August 2011; Accepted 2 October 2011

Academic Editors: M. Arias-Estévez and I. Vasilakoglou

Copyright © 2012 Ferdaous Guasmi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. D. Bennett and J. B. Smith, “Nuclear DNA amounts in angiosperms,” Philosophical Transactions of the Royal Society of London B, vol. 274, no. 933, pp. 227–274, 1976. View at Google Scholar · View at Scopus
  2. N. I. Vavilov, “Phytogeographic basis of plant breeding: the origin variation immunity and breeding of cultivated plants,” Chronica Botanica, vol. 13, pp. 361–366, 1951. View at Google Scholar
  3. S. Laugesen, K. S. Bak-Jensen, P. Hägglund et al., “Barley peroxidase isozymes. Expression and post-translational modification in mature seeds as identified by two-dimensional gel electrophoresis and mass spectrometry,” International Journal of Mass Spectrometry, vol. 268, no. 2-3, pp. 244–253, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. P. C. Canci, L. M. Nduulu, R. Dill-Macky, G. J. Muehlbauer, D. C. Rasmusson, and K. P. Smith, “Genetic relationship between kernel discoloration and grain protein concentration in barley,” Crop Science, vol. 43, no. 5, pp. 1671–1679, 2003. View at Google Scholar · View at Scopus
  5. W. Powell, M. Morgante, C. Andre et al., “The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis,” Molecular Breeding, vol. 2, no. 3, pp. 225–238, 1996. View at Google Scholar · View at Scopus
  6. J. R. Russell, J. D. Fuller, M. Macaulay et al., “Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs,” Theoretical and Applied Genetics, vol. 95, no. 4, pp. 714–722, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. J. A. Dávila, Y. Loarce, L. Ramsay, R. Waugh, and E. Ferrer, “Comparison of RAMP and SSR markers for the study of wild barley genetic diversity,” Hereditas, vol. 131, no. 1, pp. 5–13, 1999. View at Google Scholar · View at Scopus
  8. K. S. Wu, R. Jones, L. Danneberger, and P. A. Scolnik, “Detection of microsatellite polymorphisms without cloning,” Nucleic Acids Research, vol. 22, no. 15, pp. 3257–3258, 1994. View at Google Scholar · View at Scopus
  9. I. A. Matus and P. M. Hayes, “Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats,” Genome, vol. 45, no. 6, pp. 1095–1106, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Tanyolac, “Inter-simple sequence repeat (ISSR) and RAPD variation among wild barley (Hordeum. vulgare subsp. spontaneum) populations from west Turkey,” Genetic Resources and Crop Evolution, vol. 50, no. 6, pp. 611–614, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. M. E. Fernández, A. M. Figueiras, and C. Benito, “The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin,” Theoretical and Applied Genetics, vol. 104, no. 5, pp. 845–851, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. K. M. Devos and M. D. Gale, “The use of random amplified polymorphic DNA markers in wheat,” Theoretical and Applied Genetics, vol. 84, no. 5-6, pp. 567–572, 1992. View at Publisher · View at Google Scholar · View at Scopus
  13. C. P. Joshi and H. T. Nguyen, “RAPD (random amplified polymorphic DNA) analysis based intervarietal genetic relationships among hexaploid wheats,” Plant Science, vol. 93, no. 1-2, pp. 95–103, 1993. View at Google Scholar · View at Scopus
  14. N. A. Tinker, M. G. Fortin, and D. E. Mather, “Random amplified polymorphic DNA and pedigree relationships in spring barley,” Theoretical and Applied Genetics, vol. 85, no. 8, pp. 976–984, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. R. B. Bernard, E. Nevo, A. J. Douglas, and A. Beiles, “Genetic diversity in wild barley (Hordeum spontaneum C. Koch) in the near east: a molecular analysis using random amplified polymorphic DNA (RAPD) markers,” Genetic Resources and Crop Evolution, vol. 44, no. 2, pp. 147–157, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Qian, S. Ge, and D. Y. Hong, “Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers,” Theoretical and Applied Genetics, vol. 102, no. 2-3, pp. 440–449, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Prevost and M. J. Wilkinson, “A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars,” Theoretical and Applied Genetics, vol. 98, no. 1, pp. 107–112, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Nagaoka and Y. Ogihara, “Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers,” Theoretical and Applied Genetics, vol. 94, no. 5, pp. 597–602, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. I. Métais, C. Aubry, B. Hamon, R. Jalouzot, and D. Peltier, “Description and analysis of genetic diversity between commercial bean lines (Phaseolus vulgaris L.),” Theoretical and Applied Genetics, vol. 101, no. 8, pp. 1207–1214, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. J. J. Doyle and J. L. Doyle, “Insulation of seedling DNA from fresh tissues,” X ray, vol. 12, pp. 13–15, 1990. View at Google Scholar
  21. N. A. Mantel, “The detection of disease clustering and a generalized regression approach,” Cancer Research, vol. 27, no. 2, pp. 209–220, 1967. View at Google Scholar · View at Scopus
  22. F. Liu, G. L. Sun, B. Salomon, and R. Von Bothmer, “Characterization of genetic diversity in core collection accessions of wild barley, Hordeum vulgare ssp. spontaneum,” Hereditas, vol. 136, no. 1, pp. 67–73, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. X. P. Chen, L. Yan, and Y. Ding, “RAPD analysis and the probable evolutionary route of wild relatives of barley from China,” Acta Botanica Sinica, vol. 42, no. 2, pp. 179–183, 2000. View at Google Scholar · View at Scopus
  24. Z. Y. Feng, Y. Z. Zhang, L. L. Zhang, and H. Q. Ling, “Genetic diversity and geographical differentiation of Hordeum vulgare ssp. spontaneum in Tibet using microsatellite markers,” High Technology Letters, vol. 10, pp. 46–53, 2003. View at Google Scholar
  25. V. Korzun, M. Roder, A. J. Worland, and A. Börner, “Intrachromosomal mapping of genes for dwarfing (Rht12) and vernalization response (Vrn1) in wheat by using RFLP and microsatellite markers,” Plant Breeding, vol. 116, no. 3, pp. 227–232, 1997. View at Google Scholar
  26. C. Feuillet, G. Schachermayr, and B. Keller, “Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat,” Plant Journal, vol. 11, no. 1, pp. 45–52, 1997. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Sourdille, M. R. Perretant, G. Charmet et al., “Linkage between RFLP markers and genes affecting kernel hardness in wheat,” Theoretical and Applied Genetics, vol. 93, no. 4, pp. 580–586, 1996. View at Publisher · View at Google Scholar
  28. G. A. Penner, J. Clarke, L. J. Bezte, and D. Leisle, “Identification of RAPD markers linked to a gene governing cadmium uptake in durum wheat,” Genome, vol. 38, no. 3, pp. 543–547, 1995. View at Google Scholar · View at Scopus
  29. J. K. Roy, M. Prasad, R. K. Varshney et al., “Identification of a microsatellite on chromosomes 6B and a STS on 7D of bread wheat showing an association with preharvest sprouting tolerance,” Theoretical and Applied Genetics, vol. 99, no. 1-2, pp. 336–340, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Prasad, R. K. Varshney, A. Kumar et al., “A microsatellite marker associated with a QTL for grain protein content on chromosome arm 2DL of bread wheat,” Theoretical and Applied Genetics, vol. 99, no. 1-2, pp. 341–345, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Demeke, A. Laroche, and D. A. Gaudet, “A DNA marker for the Bt-10 common bunt resistance gene in wheat,” Genome, vol. 39, no. 1, pp. 51–55, 1996. View at Google Scholar · View at Scopus
  32. L. Qi, M. Cao, P. Chen, W. Li, and D. Liu, “Identification, mapping, and application of polymorphic DNA associated with resistance gene Pm21 of wheat,” Genome, vol. 39, no. 1, pp. 191–197, 1996. View at Google Scholar · View at Scopus
  33. K. G. Campbell, C. J. Bergman, D. G. Gualberto et al., “Quantitative trait associated with kernel traits in a soft x hard wheat cross,” Crop Science, vol. 39, no. 4, pp. 1184–1195, 1999. View at Google Scholar
  34. J. A. Udall, E. Souza, J. Anderson, M. E. Sorrells, and R. S. Zemetra, “Quantitative trait loci for flour viscosity in winter wheat,” Crop Science, vol. 39, no. 1, pp. 238–242, 1999. View at Google Scholar · View at Scopus
  35. S. Naik, K. S. Gill, V. S. P. Rao et al., “Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs,” Theoretical and Applied Genetics, vol. 97, no. 8, pp. 1248–1255, 1998. View at Google Scholar
  36. A. A. Galande, R. Tiwari, J. S. S. Ammiraju et al., “Genetic analysis of kernel hardness in bread wheat using PCR-based markers,” Theoretical and Applied Genetics, vol. 103, no. 4, pp. 601–606, 2001. View at Google Scholar · View at Scopus
  37. F. Guasmi, L. Touil, K. Féres, N. Marzougui, W. Elfalleh, and A. Ferchichi, “Variety identification and genetic relationship of some South Tunisian barley accessions using agronomic parameters,” Journal of Food, Agriculture and Environment, vol. 7, no. 2, pp. 522–527, 2009. View at Google Scholar · View at Scopus
  38. E. D. Owuor, A. Beharav, T. Fahima, V. M. Kirzhner, A. B. Korol, and E. Nevo, “Microscale ecological stress causes RAPD molecular selection in wild barley, Neve Yaar microsite, Israel,” Genetic Resources and Crop Evolution, vol. 50, no. 2, pp. 213–224, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. E.-H. Dakir, M.-L. Ruiz, P. García, and M. Pérez de la Vega, “Genetic variability evaluation in a Moroccan collection of barley, Hordeum vulgare L., by means of storage proteins and RAPDS,” Genetic Resources and Crop Evolution, vol. 49, no. 6, pp. 619–631, 2002. View at Publisher · View at Google Scholar
  40. D. Edward, B. Owuor, F. Tzion, B. Avigdor, A. Korol, and E. Nevo, “Population genetic response to microsite ecological stress in wild barley, Hordeum spontaneum,” Molecular Ecology, vol. 6, no. 12, pp. 1177–1187, 1997. View at Google Scholar
  41. Y. Q. Yin, D. Q. Ma, and Y. Ding, “Analysis of genetic diversity of hordein in wild close relatives of barley from Tibet,” Theoretical and Applied Genetics, vol. 107, no. 5, pp. 837–842, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus