Table of Contents
ISRN Otolaryngology
Volume 2012 (2012), Article ID 953089, 7 pages
http://dx.doi.org/10.5402/2012/953089
Review Article

mTOR Pathway and mTOR Inhibitors in Head and Neck Cancer

Department of Surgery, The University of Hong Kong and Queen Mary Hospital, 102 Pokfulam Road, Hong Kong

Received 31 July 2012; Accepted 25 September 2012

Academic Editors: J. M. Millan and M. Tahara

Copyright © 2012 Wei Gao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” Cancer Journal for Clinicians, vol. 55, no. 2, pp. 74–108, 2005. View at Google Scholar · View at Scopus
  2. G. D'Souza, A. R. Kreimer, R. Viscidi et al., “Case-control study of human papillomavirus and oropharyngeal cancer,” The New England Journal of Medicine, vol. 356, no. 19, pp. 1944–1956, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Marur and A. A. Forastiere, “Head and neck cancer: changing epidemiology, diagnosis, and treatment,” Mayo Clinic Proceedings, vol. 83, no. 4, pp. 489–501, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Argiris, M. V. Karamouzis, D. Raben, and R. L. Ferris, “Head and neck cancer,” The Lancet, vol. 371, no. 9625, pp. 1695–1709, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. S. J. Wong, P. M. Harari, A. S. Garden et al., “Longitudinal oncology registry of head and neck carcinoma (LORHAN),” Cancer, vol. 117, no. 8, pp. 1679–1686, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. M. L. Miller and I. Ojima, “Chemistry and chemical biology of taxane anticancer agents,” Chemical Records, vol. 1, no. 3, pp. 195–211, 2001. View at Google Scholar · View at Scopus
  7. D. B. Longley, D. P. Harkin, and P. G. Johnston, “5-Fluorouracil: mechanisms of action and clinical strategies,” Nature Reviews Cancer, vol. 3, no. 5, pp. 330–338, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Vissink, J. Jansma, F. K. L. Spijkervet, F. R. Burlage, and R. P. Coppes, “Oral sequelae of head and neck radiotherapy,” Critical Reviews in Oral Biology and Medicine, vol. 14, no. 3, pp. 199–212, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Argiris, B. E. Brockstein, D. J. Haraf et al., “Competing causes of death and second primary tumors in patients with locoregionally advanced head and neck cancer treated with chemoradiotherapy,” Clinical Cancer Research, vol. 10, no. 6, pp. 1956–1962, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. S. K. Kundu and M. Nestor, “Targeted therapy in head and neck cancer,” Tumour Biology, vol. 33, no. 3, pp. 707–721, 2012. View at Google Scholar
  11. J. P. MacHiels and S. Schmitz, “New advances in targeted therapies for squamous cell carcinoma of the head and neck,” Anti-Cancer Drugs, vol. 22, no. 7, pp. 626–633, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Hay and N. Sonenberg, “Upstream and downstream of mTOR,” Genes and Development, vol. 18, no. 16, pp. 1926–1945, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. M. Liao, C. Kim, and Y. Yen, “Mammalian target of rapamycin and head and neck squamous cell carcinoma,” Head and Neck Oncology, vol. 3, no. 1, article 22, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Y. Zaytseva, J. D. Valentino, P. Gulhati, and B. M. Evers, “mTOR inhibitors in cancer therapy,” Cancer Letters, vol. 319, no. 1, pp. 1–7, 2012. View at Google Scholar
  15. D. H. Kim and D. M. Sabatini, “Raptor and mTOR: subunits of a nutrient-sensitive complex,” Current Topics in Microbiology and Immunology, vol. 279, pp. 259–270, 2004. View at Google Scholar · View at Scopus
  16. D. H. Kim, D. D. Sarbassov, S. M. Ali et al., “mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery,” Cell, vol. 110, no. 2, pp. 163–175, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Jacinto, R. Loewith, A. Schmidt et al., “Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive,” Nature Cell Biology, vol. 6, no. 11, pp. 1122–1128, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Zhang, H. Cao, and G. N. Rao, “15(S)-hydroxyeicosatetraenoic acid induces angiogenesis via activation of PI3K-Akt-mTOR-S6K1 signaling,” Cancer Research, vol. 65, no. 16, pp. 7283–7291, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. D. D. Sarbassov, S. M. Ali, and D. M. Sabatini, “Growing roles for the mTOR pathway,” Current Opinion in Cell Biology, vol. 17, no. 6, pp. 596–603, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. D. C. Fingar, S. Salama, C. Tsou, E. Harlow, and J. Blenis, “Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E,” Genes and Development, vol. 16, no. 12, pp. 1472–1487, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. A. De Benedetti and J. R. Graff, “eIF-4E expression and its role in malignancies and metastases,” Oncogene, vol. 23, no. 18, pp. 3189–3199, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. I. B. Rosenwald, A. Lazaris-Karatzas, N. Sonenberg, and E. V. Schmidt, “Elevated levels of cyclin D1 protein in response to increased expression of eukaryotic initiation factor 4E,” Molecular and Cellular Biology, vol. 13, no. 12, pp. 7358–7363, 1993. View at Google Scholar · View at Scopus
  23. Y. Jiang and R. J. Muschel, “Regulation of matrix metalloproteinase-9 (MMP-9) by translational efficiency in murine prostate carcinoma cells,” Cancer Research, vol. 62, no. 6, pp. 1910–1914, 2002. View at Google Scholar · View at Scopus
  24. X. M. Ma and J. Blenis, “Molecular mechanisms of mTOR-mediated translational control,” Nature Reviews Molecular Cell Biology, vol. 10, no. 5, pp. 307–318, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. M. García-Martínez and D. R. Alessi, “mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1),” The Biochemical Journal, vol. 416, no. 3, pp. 375–385, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Lionello, S. Blandamura, L. Loreggian et al., “High mTOR expression is associated with a worse oncological outcome in laryngeal carcinoma treated with postoperative radiotherapy: a pilot study,” Journal of Oral Pathology & Medicine, vol. 41, no. 2, pp. 136–140, 2012. View at Google Scholar
  27. C. A. O. Nathan, S. Franklin, F. W. Abreo, R. Nassar, A. De Benedetti, and J. Glass, “Analysis of surgical margins with the molecular marker eIF4E: a prognostic factor in patients with head and neck cancer,” Journal of Clinical Oncology, vol. 17, no. 9, pp. 2909–2914, 1999. View at Google Scholar · View at Scopus
  28. D. L. Sorrells, G. E. Ghali, C. Meschonat et al., “Competitive PCR to detect eIF4E gene amplification in head and neck cancer,” Head & Neck, vol. 21, no. 1, pp. 60–65, 1999. View at Google Scholar
  29. S. Chakraborty, S. M. A. Azeem, K. S. Gopinath, and A. Kumar, “Involvement of TSC genes and differential expression of other members of the mTOR signaling pathway in oral squamous cell carcinoma,” BMC Cancer, vol. 8, article 163, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Amornphimoltham, V. Patel, A. Sodhi et al., “Mammalian target of rapamycin, a molecular target in squamous cell carcinomas of the head and neck,” Cancer Research, vol. 65, no. 21, pp. 9953–9961, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. A. A. Molinolo, C. Marsh, M. El Dinali et al., “mTOR as a molecular target in HPV-associated oral and cervical squamous carcinomas,” Clinical Cancer Research, vol. 18, no. 9, pp. 2558–2568, 2012. View at Google Scholar
  32. J. Chen, C. F. Hu, J. H. Hou et al., “Epstein-Barr virus encoded latent membrane protein 1 regulates mTOR signaling pathway genes which predict poor prognosis of nasopharyngeal carcinoma,” Journal of Translational Medicine, vol. 8, article 30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Clark, S. Shah, L. Herman-Ferdinandez et al., “Teasing out the best molecular marker in the AKT/mTOR pathway in head and neck squamous cell cancer patients,” The Laryngoscope, vol. 120, no. 6, pp. 1159–1165, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. D. A. Guertin and D. M. Sabatini, “The pharmacology of mTOR inhibition,” Science Signaling, vol. 2, no. 67, p. pe24, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. E. J. Brown, M. W. Albers, T. B. Shin et al., “A mammalian protein targeted by G1-arresting rapamycin-receptor complex,” Nature, vol. 369, no. 6483, pp. 756–758, 1994. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Crowe, A. Bruelisauer, L. Duerr, P. Guntz, and M. Lemaire, “Absorption and intestinal metabolism of SDZ-RAD and rapamycin in rats,” Drug Metabolism and Disposition, vol. 27, no. 5, pp. 627–632, 1999. View at Google Scholar · View at Scopus
  37. Q. Liu, C. Thoreen, J. Wang, D. Sabatini, and N. S. Gray, “MTOR mediated anti-cancer drug discovery,” Drug Discovery Today, vol. 6, no. 2, pp. 47–55, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. R. E. Brown, P. L. Zhang, M. Lun et al., “Morphoproteomic and pharmacoproteomic rationale for mTOR effectors as therapeutic targets in head and neck squamous cell carcinoma,” Annals of Clinical and Laboratory Science, vol. 36, no. 3, pp. 273–282, 2006. View at Google Scholar · View at Scopus
  39. A. R. Raimondi, A. Molinolo, and J. S. Gutkind, “Rapamycin prevents early onset of tumorigenesis in an oral-specific K-ras and p53 two-hit carcinogenesis model,” Cancer Research, vol. 69, no. 10, pp. 4159–4166, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Czerninski, P. Amornphimoltham, V. Patel, A. A. Molinolo, and J. S. Gutkind, “Targeting mammalian target of rapamycin by rapamycin prevents tumor progression in an oral-specific chemical carcinogenesis model,” Cancer Prevention Research, vol. 2, no. 1, pp. 27–36, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Schedel, R. Pries, B. Thode et al., “mTOR inhibitors show promising in vitro activity in bladder cancer and head and neck squamous cell carcinoma,” Oncology Reports, vol. 25, no. 3, pp. 763–768, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. C. A. O. Nathan, N. Amirghahari, X. Rong et al., “Mammalian target of rapamycin inhibitors as possible adjuvant therapy for microscopic residual disease in head and neck squamous cell cancer,” Cancer Research, vol. 67, no. 5, pp. 2160–2168, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Jimeno, P. Kulesza, J. Wheelhouse et al., “Dual EGFR and mTOR targeting in squamous cell carcinoma models, and development of early markers of efficacy,” British Journal of Cancer, vol. 96, no. 6, pp. 952–959, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. V. Patel, C. A. Marsh, R. T. Dorsam et al., “Decreased lymphangiogenesis and lymph node metastasis by mTOR inhibition in head and neck cancer,” Cancer Research, vol. 71, no. 22, pp. 7103–7112, 2011. View at Google Scholar
  45. M. J. MacKenzie, S. Ernst, C. Johnson, and E. Winquist, “A phase I study of temsirolimus and metformin in advanced solid tumours,” Investigational New Drugs, vol. 30, no. 2, pp. 647–652, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. O. Ekshyyan, Y. Rong, X. Rong et al., “Comparison of radiosensitizing effects of the mammalian target of rapamycin inhibitor CCI-779 to cisplatin in experimental models of head and neck squamous cell carcinoma,” Molecular Cancer Therapeutics, vol. 8, no. 8, pp. 2255–2265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Gaur, L. Chen, L. Yang, X. Wu, F. Un, and Y. Yen, “Inhibitors of mTOR overcome drug resistance from topoisomerase II inhibitors in solid tumors,” Cancer Letters, vol. 311, no. 1, pp. 20–28, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Bozec, M. C. Etienne-Grimaldi, J. L. Fischel et al., “The mTOR-targeting drug temsirolimus enhances the growth-inhibiting effects of the cetuximab-bevacizumab-irradiation combination on head and neck cancer xenografts,” Oral Oncology, vol. 47, no. 5, pp. 340–344, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. B. B. Y. Ma, V. W. Y. Lui, E. P. Hui et al., “The activity of mTOR inhibitor RAD001 (everolimus) in nasopharyngeal carcinoma and cisplatin-resistant cell lines,” Investigational New Drugs, vol. 28, no. 4, pp. 413–420, 2010. View at Publisher · View at Google Scholar · View at Scopus