Table of Contents
ISRN Optics
Volume 2012, Article ID 958412, 6 pages
http://dx.doi.org/10.5402/2012/958412
Research Article

Peculiarities of Photoluminescence in Porous Silicon Prepared by Metal-Assisted Chemical Etching

Department of Experimental Physics, Odessa I.I.Mechnikov National University, Pastera Street 42, Odessa 65023, Ukraine

Received 16 August 2012; Accepted 24 September 2012

Academic Editors: L. R. P. Kassab and Y. S. Kivshar

Copyright © 2012 Igor Iatsunskyi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Applied Physics Letters, vol. 57, Article ID 1046, 1990. View at Google Scholar
  2. B. Gelloz, A. Kojima, and N. Koshida, “Highly efficient and stable luminescence of nanocrystalline porous silicon treated by high-pressure water vapor annealing,” Applied Physics Letters, vol. 87, Article ID 031107, 2005. View at Google Scholar
  3. N. A. Hill and K. B. Whaley, “Size dependence of excitons in silicon nanocrystals,” Physical Review Letters, vol. 75, pp. 1130–1133, 1995. View at Google Scholar
  4. P. Mutti, G. Ghislotti, S. Bertoni et al., “Room-temperature visible luminescence from silicon nanocrystals in silicon implanted SiO2 layers,” Applied Physics Letters, p. 851, 1995. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Sahu, H. P. Lenka, D. P. Mahapatra, B. Rout, and F. D. McDaniel, “Narrow band UV emission from direct bandgap Si nanoclusters embedded in bulk Si,” Journal of Physics, vol. 22, no. 7, Article ID 072203, 2010. View at Google Scholar
  6. M. W. Shao, L. Cheng, M. L. Zhang et al., “Nitrogen-doped silicon nanowires: Synthesis and their blue cathodoluminescence and photoluminescence,” Applied Physics Letters, vol. 95, Article ID 143110, 2009. View at Google Scholar
  7. J. Huo, R. Solanki, J. L. Freeouf, and J. R. Carruthers, “Electroluminescence from silicon nanowires,” Nanotechnology, vol. 15, no. 12, pp. 1848–1850, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. B. C. Chakravarty, J. Tripathi, A. K. Sharma et al., “The growth kinetics and optical confinement studies of porous Si for application in terrestrial Si solar cells as antireflection coating,” Solar Energy Materials and Solar Cells, vol. 91, no. 8, pp. 701–706, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Torchynska, J. Aguilar-Hernandez, M. Morales Rodriguez et al., “Comparative investigation of photoluminescence of silicon wire structures and silicon oxide films,” Journal of Physics and Chemistry of Solids, vol. 63, no. 4, pp. 561–568, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. H. S. Mavi, B. G. Rasheed, A. K. Shukla, S. C. Abbi, and K. P. Jain, “Photoluminescence study of Nd:YAG laser-etched silicon,” Journal of Non-Crystalline Solids, vol. 286, no. 3, pp. 162–168, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Tit, Z. H. Yamani, G. Pizzi, and M. Virgilio, “Origins of visible-light emissions in porous silicon,” Physica Status Solidi C, vol. 9, pp. 1458–1461, 2012. View at Google Scholar
  12. L. H. Lin, X. Z. Sun, R. Tao et al., “Photoluminescence origins of the porous silicon nanowire arrays,” Journal of Applied Physics, vol. 110, Article ID 073109, 2011. View at Google Scholar
  13. K. Balasundaram, J. S. Sadhu, J. C. Shin et al., “Porosity control in metal-assisted chemical etching of degenerately doped silicon nanowires,” Nanotechnology, vol. 23, no. 30, Article ID 305304, 2012. View at Google Scholar
  14. Y. Harada, X. Li, P. W. Bohn, and R. G. Nuzzo, “Catalytic amplification of the soft lithographic patterning of Si. Nonelectrochemical orthogonal fabrication of photoluminescent porous Si pixel arrays,” Journal of the American Chemical Society, vol. 123, no. 36, pp. 8709–8717, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Li and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon,” Applied Physics Letters, vol. 77, Article ID 2572, 2000. View at Google Scholar
  16. X. Li, Y. W. Kim, P. W. Bohn, and I. Adesida, “In-plane bandgap control in porous GaN through electroless wet chemical etching,” Applied Physics Letters, vol. 80, no. 6, p. 980, 2002. View at Google Scholar
  17. Z. Huang, N. Geyer, P. Werner, J. De Boor, and U. Gösele, “Metal-assisted chemical etching of silicon: a review,” Advanced Materials, vol. 23, no. 2, pp. 285–308, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. W. K. Kolasinski, “Silicon nanostructures from electroless electrochemical etching,” Current Opinion in Solid State & Materials Science, vol. 9, pp. 73–83, 2005. View at Google Scholar
  19. T. Hadjersi, N. Gabouze, E. S. Kooij et al., “Metal-assisted chemical etching in HF/Na2S2O8 OR HF/KMnO4 produces porous silicon,” Thin Solid Films, vol. 459, no. 1-2, pp. 271–275, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Chartier, S. Bastide, and C. Lévy-Clément, “Metal-assisted chemical etching of silicon in HF-H2O2,” Electrochimica Acta, vol. 53, no. 17, pp. 5509–5516, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Applied Physics Letters, vol. 88, Article ID 203107.
  22. J. N. Chazalviel, F. Ozanam, N. Gabouze, S. Fellah, and R. B. Wehrspohn, “Quantitative analysis of the morphology of macropores on low-doped p-Si: minimum resistivity,” Journal of the Electrochemical Society, vol. 149, no. 10, pp. C511–C520, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Physical Review B, vol. 48, no. 15, pp. 11024–11036, 1993. View at Publisher · View at Google Scholar · View at Scopus
  24. J. T. Wolan and G. B. Hoflund, “Surface characterization study of AgF and AgF2 powders using XPS and ISS,” Applied Surface Science, vol. 125, no. 3-4, pp. 251–258, 1998. View at Google Scholar · View at Scopus
  25. B. N. Onwuagba, “The electronic structure of AgF, AgCl and AgBr,” Solid State Communications, vol. 97, no. 4, pp. 267–271, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. R. C. Birtcher, P. W. Deutsch, J. F. Wendelkens, and A. B. Kunz, “Valence band structure in silver fluoride,” Journal of Physics C, vol. 5, p. 562, 1972. View at Google Scholar
  27. H. Mizuno, H. Koyama, and N. Koshida, “Oxide-free blue photoluminescence from photochemically etched porous silicon,” Applied Physics Letters, vol. 69, no. 25, pp. 3779–3781, 1996. View at Google Scholar · View at Scopus
  28. G. Ledoux, O. Guillois, D. Porterat et al., “Photoluminescence properties of silicon nanocrystals as a function of their size,” Physical Review B, vol. 62, no. 23, pp. 15942–15951, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Hadjersi, N. Gabouze, N. Yamamoto, H. Takai, and A. Ababou, “Photoluminescence from undoped silicon after chemical etching combined with metal plating,” Physica Status Solidi C, vol. 2, pp. 3384–3388, 2005. View at Google Scholar