Table of Contents
ISRN Ceramics
Volume 2012, Article ID 972054, 6 pages
http://dx.doi.org/10.5402/2012/972054
Research Article

Microstructural Modeling of Ni- Composites Using Object-Oriented Finite-Element Method

1Noida Institute of Engineering and Technology, Greater Noida 201306, India
2School of Engineering, Indian Institute of Technology Mandi, Mandi 175 001, India

Received 31 July 2012; Accepted 6 September 2012

Academic Editors: K. Oh-Ishi and W.-H. Tuan

Copyright © 2012 Neeraj Kumar Sharma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. R. Clarke, “Interpenetrating phase composites,” Journal of the American Ceramic Society, vol. 75, pp. 739–759, 1992. View at Google Scholar
  2. M. K. Aghajanian, N. H. MacMillan, C. R. Kennedy, S. J. Luszcz, and R. Roy, “Properties and microstructures of Lanxide Al2O3-Al ceramic composite materials,” Journal of Materials Science, vol. 24, no. 2, pp. 658–670, 1989. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Prielipp, M. Knechtel, N. Claussen et al., “Strength and fracture toughness of aluminum/alumina composites with interpenetrating networks,” Materials Science and Engineering A, vol. 197, no. 1, pp. 19–30, 1995. View at Google Scholar · View at Scopus
  4. W. Liu and U. Köster, “Microstructures and properties of interpenetrating alumina/aluminium composites made by reaction of SiO2 glass preforms with molten aluminium,” Materials Science and Engineering A, vol. 210, no. 1-2, pp. 1–7, 1996. View at Google Scholar · View at Scopus
  5. R. E. Loehman, K. Ewsuk, and A. P. Tomsia, “Synthesis of Al2O3-Al composites by reactive metal penetration,” Journal of the American Ceramic Society, vol. 79, no. 1, pp. 27–32, 1996. View at Google Scholar · View at Scopus
  6. W. G. Fahrenholtz, D. T. Ellerby, and R. E. Loehman, “Al2O3-Ni composites with high strength and fracture toughness,” Journal of the American Ceramic Society, vol. 83, no. 5, pp. 1279–1280, 2000. View at Google Scholar · View at Scopus
  7. H. A. Bruck and B. H. Rabin, “Evaluating microstructural and damage effects in rule-of-mixtures predictions of the mechanical properties of Ni-Al2O3 composites,” Journal of Materials Science, vol. 34, no. 9, pp. 2241–2251, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. D. E. Aldrich and Z. Fan, “Microstructural characterisation of interpenetrating nickel/alumina composites,” Materials Characterization, vol. 47, no. 3-4, pp. 167–173, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. Hashin and S. Shtrikman, “A variational approach to the theory of the elastic behaviour of multiphase materials,” Journal of the Mechanics and Physics of Solids, vol. 11, no. 2, pp. 127–140, 1963. View at Google Scholar · View at Scopus
  10. P. S. Turner, “Thermal-expansion stresses in reinforced plastics,” Journal of Research of the National Bureau of Standards, vol. 37, p. 239, 1946. View at Google Scholar
  11. E. H. Kerner, “The elastic and Thermo-elastic properties of composite media,” Proceedings of the Physical Society B, vol. 69, no. 8, pp. 808–813, 1956. View at Publisher · View at Google Scholar · View at Scopus
  12. R. A. Schapery, “Thermal expansion coefficients of composite materials based on energy principles,” Journal of Composite Materials, vol. 2, no. 3, pp. 380–404, 1968. View at Google Scholar
  13. S. R. Bakshi, R. R. Patel, and A. Agarwal, “Thermal conductivity of carbon nanotube reinforced aluminum composites: a multi-scale study using object oriented finite element method,” Computational Materials Science, vol. 50, no. 2, pp. 419–428, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Chawla, B. V. Patel, M. Koopman et al., “Microstructure-based simulation of thermomechanical behavior of composite materials by object-oriented finite element analysis,” Materials Characterization, vol. 49, no. 5, pp. 395–407, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. A. C. E. Reid, R. C. Lua, R. E. García, V. R. Coffman, and S. A. Langer, “Modelling microstructures with OOF2,” International Journal of Materials and Product Technology, vol. 35, no. 3-4, pp. 361–373, 2009. View at Google Scholar · View at Scopus
  16. A. C. E. Reid, S. A. Langer, R. C. Lua, V. R. Coffman, S. I. I. I. Haan, and R. E. García, “Image-based finite element mesh construction for material microstructures,” Computational Materials Science, vol. 43, no. 4, pp. 989–999, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Elomari, R. Boukhili, and D. J. Lloyd, “Thermal expansion studies of prestrained A12O3/A1 metal matrix composite,” Acta Materialia, vol. 44, no. 5, pp. 1873–1882, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. Y.-L. Shen, A. Needleman, and S. Suresh, “Coefficients of thermal expansion of metal-matrix composites for electronic packaging,” Metallurgical Transactions A, vol. 25, no. 4, pp. 839–850, 1994. View at Google Scholar · View at Scopus
  19. M. Olsson, A. E. Giannakopoulos, and S. Suresh, “Elastoplastic analysis of thermal cycling: ceramic particles in a metallic matrix,” Journal of the Mechanics and Physics of Solids, vol. 43, no. 10, pp. 1639–1671, 1995. View at Google Scholar · View at Scopus