Table of Contents
ISRN Neurology
Volume 2012, Article ID 972607, 24 pages
http://dx.doi.org/10.5402/2012/972607
Review Article

Current Perspectives on the Neurobiology of Drug Addiction: A Focus on Genetics and Factors Regulating Gene Expression

1The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
2Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia

Received 16 August 2012; Accepted 6 September 2012

Academic Editors: C.-Y. Hsu and A. Mamelak

Copyright © 2012 Jhodie R. Duncan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Degenhardt and W. Hall, “Extent of illicit drug use and dependence, and their contribution to the global burden of disease,” Lancet, vol. 379, no. 9810, pp. 55–70, 2012. View at Google Scholar
  2. Australian Institute of Health and Welfare, “2010 National Drug Strategy Household Survey,” http://www.aihw.gov.au/publication-detail/?id=32212254712.
  3. S. Begg, T. Vos, B. Barker, C. Stevenson, and L. Stanley, “The burden of disease and injury in Australia,” Canberra, AIHW, Australia, 2003, http://www.aihw.gov.au/publication-detail/?id=6442467990.
  4. D. J. Collins and H. M. Lapsley, “The costs of tobacco, alcohol and illicit drug abuse to Aust. society in 2004/05- Summary,” Commonwealth of Australia, 2008, http://www.nationaldrugstrategy.gov.au/internet/drugstrategy/publishing.nsf/Content/mono66/$File/mono66.pdf.
  5. Cancer Council Australia, “Facts and Figures,” 2010, http://www.cancer.org.au/about-cancer/what-is-cancer/facts-and-figures.html.
  6. CATI Technical Reference Group National Public Health Partnership, “Population health monitoring and surveillance: question development background paper—cardiovascular disease in Australia,” 2003, http://www.nphp.gov.au/catitrg/cvdbgpaper.pdf.
  7. P. Pouletty, “Drug addictions: towards socially accepted and medically treatable diseases,” Nature Reviews Drug Discovery, vol. 1, no. 9, pp. 731–736, 2002. View at Google Scholar · View at Scopus
  8. Central Intallegance Agency, “The World Factbook,” Office of Public Affairs: Washington, DC, USA, 2009, https://www.cia.gov/library/publications/the-world-factbook/index.html.
  9. S. E. Hyman and R. C. Malenka, “Addiction and the brain: the neurobiology of compulsion and its persistence,” Nature Reviews Neuroscience, vol. 2, no. 10, pp. 695–703, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. C. W. Bradberry, “Dynamics of extracellular dopamine in the acute and chronic actions of cocaine,” Neuroscientist, vol. 8, no. 4, pp. 315–322, 2002. View at Google Scholar · View at Scopus
  11. F. Nees, C. Diener, M. N. Smolka, and H. Flor, “The role of context in the processing of alcohol-relevant cues,” Addiction Biology, vol. 17, no. 2, pp. 441–451, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. A. McKeon, M. A. Frye, and N. Delanty, “The alcohol withdrawal syndrome,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 79, no. 8, pp. 854–862, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. W. DeJong, “Relapse prevention: an emerging technology for promoting long-term drug abstinence,” International Journal of the Addictions, vol. 29, no. 6, pp. 681–705, 1994. View at Google Scholar · View at Scopus
  14. G. F. Koob and N. D. Volkow, “Neurocircuitry of addiction,” Neuropsychopharmacology, vol. 35, no. 1, pp. 217–238, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Belin, N. Berson, E. Balado, P. V. Piazza, and V. Deroche-Gamonet, “High-novelty-preference rats are predisposed to compulsive cocaine self-administration,” Neuropsychopharmacology, vol. 36, no. 3, pp. 569–579, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. P. V. Piazza, J. M. Deminiere, M. Le Moal, and H. Simon, “Factors that predict individual vulnerability to amphetamine self-administration,” Science, vol. 245, no. 4925, pp. 1511–1513, 1989. View at Google Scholar · View at Scopus
  17. J. W. Dalley, B. J. Everitt, and T. W. Robbins, “Impulsivity, compulsivity, and top-down cognitive control,” Neuron, vol. 69, no. 4, pp. 680–694, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. J. Fernandez-Serrano, J. C. Perales, L. Moreno-Lopez, M. Perez-Garcia, and A. Verdejo-Garcia, “Neuropsychological profiling of impulsivity and compulsivity in cocaine dependent individuals,” Psychopharmacology, vol. 219, no. 2, pp. 673–683, 2012. View at Google Scholar
  19. N. W. Simon, I. A. Mendez, and B. Setlow, “Cocaine exposure causes long-term increases in impulsive choice,” Behavioral Neuroscience, vol. 121, no. 3, pp. 543–549, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. K. D. Ersche, A. J. Turton, S. Pradhan, E. T. Bullmore, and T. W. Robbins, “Drug addiction endophenotypes: impulsive versus sensation-seeking personality traits,” Biological Psychiatry, vol. 68, no. 8, pp. 770–773, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Economidou, Y. Pelloux, T. W. Robbins, J. W. Dalley, and B. J. Everitt, “High impulsivity predicts relapse to cocaine-seeking after punishment-induced abstinence,” Biological Psychiatry, vol. 65, no. 10, pp. 851–856, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. J. T. Nigg, M. M. Wong, M. M. Martel et al., “Poor response inhibition as a predictor of problem drinking and illicit drug use in adolescents at risk for alcoholism and other substance use disorders,” Journal of the American Academy of Child and Adolescent Psychiatry, vol. 45, no. 4, pp. 468–475, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Audrain-McGovern, D. Rodriguez, L. H. Epstein, J. Cuevas, K. Rodgers, and E. P. Wileyto, “Does delay discounting play an etiological role in smoking or is it a consequence of smoking?” Drug and Alcohol Dependence, vol. 103, no. 3, pp. 99–106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Belin, A. C. Mar, J. W. Dalley, T. W. Robbins, and B. J. Everitt, “High impulsivity predicts the switch to compulsive cocaine-taking,” Science, vol. 320, no. 5881, pp. 1352–1355, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. A. C. Molander, A. Mar, A. Norbury et al., “High impulsivity predicting vulnerability to cocaine addiction in rats: some relationship with novelty preference but not novelty reactivity, anxiety or stress,” Psychopharmacology, vol. 215, no. 4, pp. 721–731, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. R. McNamara, J. W. Dalley, T. W. Robbins, B. J. Everitt, and D. Belin, “Trait-like impulsivity does not predict escalation of heroin self-administration in the rat,” Psychopharmacology, vol. 212, no. 4, pp. 453–464, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. M. C. Schippers, R. Binnekade, A. N. Schoffelmeer, T. Pattij, and T. J. De Vries, “Unidirectional relationship between heroin self-administration and impulsive decision-making in rats,” Psychopharmacology, vol. 219, no. 2, pp. 443–452, 2012. View at Google Scholar
  28. V. Deroche-Gamonet, D. Belin, and P. V. Piazza, “Evidence for addiction-like behavior in the rat,” Science, vol. 305, no. 5686, pp. 1014–1017, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. C. K. Erickson, H. Granberry, J. Maxwell, and R. T. Spence, Comparative Pharmalogical Profiles of Abused Drugs, The Texas Commission on Alcohol and Drug Abuse, Austin, Tex, USA, 1998.
  30. M. Le Moal and H. Simon, “Mesocorticolimbic dopaminergic network: functional and regulatory roles,” Physiological Reviews, vol. 71, no. 1, pp. 155–234, 1991. View at Google Scholar · View at Scopus
  31. I. Willuhn, M. J. Wanat, J. J. Clark, and P. E. Phillips, “Dopamine signaling in the nucleus accumbens of animals self-administering drugs of abuse,” Current Topics in Behavioral Neurosciences, vol. 3, pp. 29–71, 2010. View at Google Scholar · View at Scopus
  32. A. C. Riegel, A. Zapata, T. S. Shippenberg, and E. D. French, “The abused inhalant toluene increases dopamine release in the nucleus accumbens by directly stimulating ventral tegmental area neurons,” Neuropsychopharmacology, vol. 32, no. 7, pp. 1558–1569, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. E. L. Riddle, A. E. Fleckenstein, and G. R. Hanson, “Role of monoamine transporters in mediating psychostimulant effects,” AAPS Journal, vol. 7, no. 4, article 81, pp. E847–E851, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Weiss, M. P. Paulus, M. T. Lorang, and G. F. Koob, “Increases in extracellular dopamine in the nucleus accumbens by cocaine are inversely related to basal levels: effects of acute and repeated administration,” Journal of Neuroscience, vol. 12, no. 11, pp. 4372–4380, 1992. View at Google Scholar · View at Scopus
  35. N. D. Volkow, J. S. Fowler, G. J. Wang, R. Baler, and F. Telang, “Imaging dopamine's role in drug abuse and addiction,” Neuropharmacology, vol. 56, no. 1, pp. 3–8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Z. Goldstein, D. Tomasi, N. Alia-Klein et al., “Dopaminergic response to drug words in cocaine addiction,” Journal of Neuroscience, vol. 29, no. 18, pp. 6001–6006, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. G. D. Stuber, J. P. Britt, and A. Bonci, “Optogenetic modulation of neural circuits that underlie reward seeking,” Biological Psychiatry, vol. 71, no. 12, pp. 1061–1067, 2011. View at Google Scholar
  38. N. W. Gilpin, “Corticotropin-releasing factor (CRF) and neuropeptide Y (NPY): effects on inhibitory transmission in central amygdala, and anxiety- & alcohol-related behaviors,” Alcohol, vol. 46, no. 4, pp. 329–337, 2012. View at Google Scholar
  39. M. R. Gerasimov, W. K. Schiffer, J. D. Brodie, I. C. Lennon, S. J. C. Taylor, and S. L. Dewey, “γ-Aminobutyric acid mimetic drugs differentially inhibit the dopaminergic response to cocaine,” European Journal of Pharmacology, vol. 395, no. 2, pp. 129–135, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. A. E. Kelley and K. C. Berridge, “The neuroscience of natural rewards: relevance to addictive drugs,” Journal of Neuroscience, vol. 22, no. 9, pp. 3306–3311, 2002. View at Google Scholar · View at Scopus
  41. P. W. Kalivas and N. D. Volkow, “The neural basis of addiction: a pathology of motivation and choice,” American Journal of Psychiatry, vol. 162, no. 8, pp. 1403–1413, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. T. E. Robinson, “Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine,” European Journal of Neuroscience, vol. 11, no. 5, pp. 1598–1604, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. A. E. Zayara, G. McIver, P. N. Valdivia, K. D. Lominac, A. C. McCreary, and K. K. Szumlinski, “Blockade of nucleus accumbens 5-HT2A and 5-HT2C receptors prevents the expression of cocaine-induced behavioral and neurochemical sensitization in rats,” Psychopharmacology, vol. 213, no. 2-3, pp. 321–335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. G. Di Chiara, G. Tanda, V. Bassareo et al., “Drug addiction as a disorder of associative learning. Role of nucleus accumbens shell/extended amygdala dopamine,” Annals of the New York Academy of Sciences, vol. 877, pp. 461–485, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. E. B. Larson, D. L. Graham, R. R. Arzaga, N. Buzin, and J. Webb, “Overexpression of CREB in the nucleus accumbens shell increases cocaine reinforcement in self-administering rats,” Journal of Neuroscience, vol. 31, no. 45, pp. 16447–16457, 2011. View at Google Scholar
  46. R. N. Cardinal, D. R. Pennicott, C. L. Sugathapala, T. W. Robbins, and B. J. Everitt, “Impulsive choice induced in rats by lesions of the nucleus accumbens core,” Science, vol. 292, no. 5526, pp. 2499–2501, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. C. R. Gerfen, T. M. Engber, L. C. Mahan et al., “D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons,” Science, vol. 250, no. 4986, pp. 1429–1432, 1990. View at Google Scholar · View at Scopus
  48. C. R. Gerfen, “The neostriatal mosaic: multiple levels of compartmental organization,” Journal of Neural Transmission, no. 36, supplement, pp. 43–59, 1992. View at Google Scholar · View at Scopus
  49. H. S. Bateup, E. Santini, W. Shen et al., “Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 33, pp. 14845–14850, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. R. Z. Goldstein and N. D. Volkow, “Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications,” Nature Reviews Neuroscience, vol. 12, no. 11, pp. 652–669, 2011. View at Google Scholar
  51. B. J. Everitt, D. Belin, D. Economidou, Y. Pelloux, J. W. Dalley, and T. W. Robbins, “Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction,” Philosophical Transactions of the Royal Society B, vol. 363, no. 1507, pp. 3125–3135, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. E. L. Gardner, “What we have learned about addiction from animal models of drug self-administration,” American Journal on Addictions, vol. 9, no. 4, pp. 285–313, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. L. J. Porrino, H. R. Smith, M. A. Nader, and T. J. R. Beveridge, “The effects of cocaine: a shifting target over the course of addiction,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 31, no. 8, pp. 1593–1600, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. K. D. Ersche, A. Barnes, P. Simon Jones, S. Morein-Zamir, T. W. Robbins, and E. T. Bullmore, “Abnormal structure of frontostriatal brain systems is associated with aspects of impulsivity and compulsivity in cocaine dependence,” Brain, vol. 134, no. 7, pp. 2013–2024, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. M. W. Feltenstein and R. E. See, “The neurocircuitry of addiction: an overview,” British Journal of Pharmacology, vol. 154, no. 2, pp. 261–274, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. T. E. Robinson, G. Gorny, E. Mitton, and B. Kolb, “Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex,” Synapse, vol. 39, no. 3, pp. 257–266, 2001. View at Google Scholar
  57. J. Kim, B. H. Park, J. H. Lee, S. K. Park, and J. H. Kim, “Cell type-specific alterations in the nucleus accumbens by repeated exposures to cocaine,” Biological Psychiatry, vol. 69, no. 11, pp. 1026–1034, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. E. C. Miller, L. Zhang, B. W. Dummer, D. R. Cariveau, and H. H. Loh, “Differential modulation of drug-induced structural and functional plasticity of dendritic spines,” Molecular Pharmacology, vol. 82, no. 2, pp. 333–343, 2012. View at Google Scholar
  59. D. Dumitriu, Q. Laplant, Y. S. Grossman, C. Dias, and W. G. Janssen, “Subregional, dendritic compartment, and spine subtype specificity in cocaine regulation of dendritic spines in the nucleus accumbens,” Journal of Neuroscience, vol. 32, no. 20, pp. 6957–6966, 2012. View at Google Scholar
  60. T. Kivinummi, K. Kaste, T. Rantamäki, E. Castrén, and L. Ahtee, “Alterations in BDNF and phospho-CREB levels following chronic oral nicotine treatment and its withdrawal in dopaminergic brain areas of mice,” Neuroscience Letters, vol. 491, no. 2, pp. 108–112, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. H. Lu, P. L. Cheng, B. K. Lim, N. Khoshnevisrad, and M. M. Poo, “Elevated BDNF after Cocaine Withdrawal Facilitates LTP in Medial Prefrontal Cortex by Suppressing GABA Inhibition,” Neuron, vol. 67, no. 5, pp. 821–833, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. H. D. Schmidt, G. R. Sangrey, S. B. Darnell, R. L. Schassburger, and J. H. Cha, “Increased brain-derived neurotrophic factor (BDNF) expression in the ventral tegmental area during cocaine abstinence is associated with increased histone acetylation at BDNF exon I-containing promoters,” Journal of Neurochemistry, vol. 120, no. 2, pp. 202–209, 2012. View at Google Scholar
  63. C. D'Sa, H. C. Fox, A. K. Hong, R. J. Dileone, and R. Sinha, “Increased serum brain-derived neurotrophic factor is predictive of cocaine relapse outcomes: a prospective study,” Biological Psychiatry, vol. 70, no. 8, pp. 706–711, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. M. A. Costa, M. Girard, F. Dalmay, and D. Malauzat, “Brain-derived neurotrophic factor serum levels in alcohol-dependent subjects 6 months after alcohol withdrawal,” Alcoholism: Clinical and Experimental Research, vol. 35, no. 11, pp. 1966–1973, 2011. View at Google Scholar
  65. J. W. Grimm, L. Lu, T. Hayashi, B. T. Hope, T. P. Su, and Y. Shaham, “Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving,” Journal of Neuroscience, vol. 23, no. 3, pp. 742–747, 2003. View at Google Scholar · View at Scopus
  66. A. Bahi, F. Boyer, and J. L. Dreyer, “Role of accumbens BDNF and TrkB in cocaine-induced psychomotor sensitization, conditioned-place preference, and reinstatement in rats,” Psychopharmacology, vol. 199, no. 2, pp. 169–182, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. L. Lu, J. Dempsey, S. Y. Liu, J. M. Bossert, and Y. Shaham, “A single infusion of brain-derived neurotrophic factor into the ventral tegmental area induces long-lasting potentiation of cocaine seeking after withdrawal,” Journal of Neuroscience, vol. 24, no. 7, pp. 1604–1611, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Moonat, A. J. Sakharkar, H. Zhang, and S. C. Pandey, “The role of amygdaloid brain-derived neurotrophic factor, activity-regulated cytoskeleton-associated protein and dendritic spines in anxiety and alcoholism,” Addiction Biology, vol. 16, no. 2, pp. 238–250, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. J. I. Tanaka, Y. Horiike, M. Matsuzaki, T. Miyazaki, G. C. R. Ellis-Davies, and H. Kasai, “Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines,” Science, vol. 319, no. 5870, pp. 1683–1687, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. Y. Ji, Y. Lu, F. Yang et al., “Acute and gradual increases in BDNF concentration elicit distinct signaling and functions in neurons,” Nature Neuroscience, vol. 13, no. 3, pp. 302–309, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. C. C. Huang, C. M. Yeh, M. Y. Wu et al., “Cocaine withdrawal impairs metabotropic glutamate receptor-dependent long-term depression in the nucleus accumbens,” Journal of Neuroscience, vol. 31, no. 11, pp. 4194–4203, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. R. C. Malenka and M. F. Bear, “LTP and LTD: an embarrassment of riches,” Neuron, vol. 44, no. 1, pp. 5–21, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. J. A. Kauer and R. C. Malenka, “Synaptic plasticity and addiction,” Nature Reviews Neuroscience, vol. 8, no. 11, pp. 844–858, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. E. Argilli, D. R. Sibley, R. C. Malenka, P. M. England, and A. Bonci, “Mechanism and time course of cocaine-induced long-term potentiation in the ventral tegmental area,” Journal of Neuroscience, vol. 28, no. 37, pp. 9092–9100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. K. Tominaga-Yoshino, T. Urakubo, M. Okada, H. Matsuda, and A. Ogura, “Repetitive induction of late-phase LTP produces long-lasting synaptic enhancement accompanied by synaptogenesis in cultured hippocampal slices,” Hippocampus, vol. 18, no. 3, pp. 281–293, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. K. Kawaai, K. Tominaga-Yoshino, T. Urakubo et al., “Analysis of gene expression changes associated with long-lasting synaptic enhancement in hippocampal slice cultures after repetitive exposures to glutamate,” Journal of Neuroscience Research, vol. 88, no. 13, pp. 2911–2922, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Mameli, C. Bellone, M. T. C. Brown, and C. Lüscher, “Cocaine inverts rules for synaptic plasticity of glutamate transmission in the ventral tegmental area,” Nature Neuroscience, vol. 14, no. 4, pp. 414–416, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. B. T. Chen, M. S. Bowers, M. Martin et al., “Cocaine but not natural reward self-administration nor passive cocaine infusion produces persistent LTP in the VTA,” Neuron, vol. 59, no. 2, pp. 288–297, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. K. Moussawi, A. Pacchioni, M. Moran et al., “N-Acetylcysteine reverses cocaine-induced metaplasticity,” Nature Neuroscience, vol. 12, no. 2, pp. 182–189, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. M. J. Thomas, C. Beurrier, A. Bonci, and R. C. Malenka, “Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine,” Nature Neuroscience, vol. 4, no. 12, pp. 1217–1223, 2001. View at Publisher · View at Google Scholar · View at Scopus
  81. F. Kasanetz, V. Deroche-Gamonet, N. Berson et al., “Transition to addiction is associated with a persistent impairment in synaptic plasticity,” Science, vol. 328, no. 5986, pp. 1709–1712, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Martin, B. T. Chen, F. W. Hopf, M. S. Bowers, and A. Bonci, “Cocaine self-administration selectively abolishes LTD in the core of the nucleus accumbens,” Nature Neuroscience, vol. 9, no. 7, pp. 868–869, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. F. Kasanetz, M. Lafourcade, V. Deroche-Gamonet, J. M. Revest, and N. Berson, “Prefrontal synaptic markers of cocaine addiction-like behavior in rats,” Molecular Psychiatry. In press. View at Publisher · View at Google Scholar
  84. K. Brebner, T. P. Wong, L. Liu et al., “Neuroscience: nucleus accumbens long-term depression and the expression of behavioral sensitization,” Science, vol. 310, no. 5752, pp. 1340–1343, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. Y. Shinoda, Y. Kamikubo, Y. Egashira, K. Tominaga-Yoshino, and A. Ogura, “Repetition of mGluR-dependent LTD causes slowly developing persistent reduction in synaptic strength accompanied by synapse elimination,” Brain Research, vol. 1042, no. 1, pp. 99–107, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. Y. Egashira, T. Tanaka, P. Soni, S. Sakuragi, K. Tominaga-Yoshino, and A. Ogura, “Involvement of the p75NTR signaling pathway in persistent synaptic suppression coupled with synapse elimination following repeated long-term depression induction,” Journal of Neuroscience Research, vol. 88, no. 16, pp. 3433–3446, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. Y. Shinoda, T. Tanaka, K. Tominaga-Yoshino, and A. Ogura, “Persistent synapse loss induced by repetitive LTD in developing rat hippocampal neurons,” PLoS ONE, vol. 5, no. 4, Article ID e10390, 2010. View at Google Scholar · View at Scopus
  88. L. A. Knackstedt, K. Moussawi, R. Lalumiere, M. Schwendt, M. Klugmann, and P. W. Kalivas, “Extinction training after cocaine self-administration induces glutamatergic plasticity to inhibit cocaine seeking,” Journal of Neuroscience, vol. 30, no. 23, pp. 7984–7992, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. J. R. Duncan, M. Garland, M. M. Myers et al., “Prenatal nicotine-exposure alters fetal autonomic activity and medullary neurotransmitter receptors: implications for sudden infant death syndrome,” Journal of Applied Physiology, vol. 107, no. 5, pp. 1579–1590, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. A. W. Ary and K. K. Szumlinski, “Regional differences in the effects of withdrawal from repeated cocaine upon Homer and glutamate receptor expression: a two-species comparison,” Brain Research, vol. 1184, no. 1, pp. 295–305, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. D. M. Segal, C. T. Moraes, and D. C. Mash, “Up-regulation of D3 dopamine receptor mRNA in the nucleus accumbens of human cocaine fatalities,” Molecular Brain Research, vol. 45, no. 2, pp. 335–339, 1997. View at Publisher · View at Google Scholar · View at Scopus
  92. A. Ökvist, P. Fagergren, J. Whittard et al., “Dysregulated postsynaptic density and endocytic zone in the amygdala of human heroin and cocaine abusers,” Biological Psychiatry, vol. 69, no. 3, pp. 245–252, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. G. C. Zhang, K. Vu, N. K. Parelkar et al., “Acute administration of cocaine reduces metabotropic glutamate receptor 8 protein expression in the rat striatum in vivo,” Neuroscience Letters, vol. 449, no. 3, pp. 224–227, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. D. A. Lane, A. Jaferi, M. J. Kreek, and V. M. Pickel, “Acute and chronic cocaine differentially alter the subcellular distribution of AMPA GluR1 subunits in region-specific neurons within the mouse ventral tegmental area,” Neuroscience, vol. 169, no. 2, pp. 559–573, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. L. Gama, S. G. Wilt, and G. E. Breitwieser, “Heterodimerization of calcium sensing receptors with metabotropic glutamate receptors in neurons,” Journal of Biological Chemistry, vol. 276, no. 42, pp. 39053–39059, 2001. View at Publisher · View at Google Scholar · View at Scopus
  96. Y. Kubo, T. Miyashita, and Y. Murata, “Structural basis for a Ca2+-Sensing functions of the metabotropic glutamate receptors,” Science, vol. 279, no. 5357, pp. 1722–1725, 1998. View at Publisher · View at Google Scholar · View at Scopus
  97. T. Miyashita and Y. Kubo, “Extracellular Ca2+ sensitivity of mGluR1α associated with persistent glutamate response in transfected CHO cells,” Receptors and Channels, vol. 7, no. 1, pp. 25–40, 2000. View at Google Scholar · View at Scopus
  98. Y. Jiang, Y. Huang, H. C. Wong et al., “Elucidation of a novel extracellular calcium-binding site on metabotropic glutamate receptor 1α (mGluR1α) that controls receptor activation,” Journal of Biological Chemistry, vol. 285, no. 43, pp. 33463–33474, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. P. Popoli, A. Pèzzola, M. Torvinen et al., “The selective mGlu5 receptor agonist CHPG inhibits quinpirole-induced turning in 6-hydroxydopamine-lesioned rats and modulates the binding characteristics of dopamine D2 receptors in the rat striatum: interactions with adenosine A2a receptors,” Neuropsychopharmacology, vol. 25, no. 4, pp. 505–513, 2001. View at Publisher · View at Google Scholar · View at Scopus
  100. H. Rosenbrock, G. Kramer, S. Hobson et al., “Functional interaction of metabotropic glutamate receptor 5 and NMDA-receptor by a metabotropic glutamate receptor 5 positive allosteric modulator,” European Journal of Pharmacology, vol. 639, no. 1–3, pp. 40–46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. J. González-Maeso, R. L. Ang, T. Yuen et al., “Identification of a serotonin/glutamate receptor complex implicated in psychosis,” Nature, vol. 452, no. 7183, pp. 93–97, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. J. Besheer and C. W. Hodge, “Pharmacological and anatomical evidence for an interaction between mGluR5- and GABAA α1-containing receptors in the discriminative stimulus effects of ethanol,” Neuropsychopharmacology, vol. 30, no. 4, pp. 747–757, 2005. View at Publisher · View at Google Scholar · View at Scopus
  103. S. Ferré, M. Karcz-Kubicha, B. T. Hope et al., “Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: implications for striatal neuronal function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 18, pp. 11940–11945, 2002. View at Publisher · View at Google Scholar · View at Scopus
  104. H. Schröder, D. F. Wu, A. Seifert et al., “Allosteric modulation of metabotropic glutamate receptor 5 affects phosphorylation, internalization, and desensitization of the μ-opioid receptor,” Neuropharmacology, vol. 56, no. 4, pp. 768–778, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. M. I. Boulware, J. P. Weick, B. R. Becklund, S. P. Kuo, R. D. Groth, and P. G. Mermelstein, “Estradiol activates group I and II metabotropic glutamate receptor signaling, leading to opposing influences on cAMP response element-binding protein,” Journal of Neuroscience, vol. 25, no. 20, pp. 5066–5078, 2005. View at Publisher · View at Google Scholar · View at Scopus
  106. N. Cabello, J. Gandía, D. C. G. Bertarelli et al., “Metabotropic glutamate type 5, dopamine D2 and adenosine A 2a receptors form higher-order oligomers in living cells,” Journal of Neurochemistry, vol. 109, no. 5, pp. 1497–1507, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. M. S. Cowen, E. Djouma, and A. J. Lawrence, “The metabotropic glutamate 5 receptor antagonist 3-[(2-methyl-1,3-thiazol- 4-yl)ethynyl]-pyridine reduces ethanol self-administration in multiple strains of alcohol-preferring rats and regulates olfactory glutamatergic systems,” Journal of Pharmacology and Experimental Therapeutics, vol. 315, no. 2, pp. 590–600, 2005. View at Publisher · View at Google Scholar · View at Scopus
  108. Z. Díaz-Cabiale, M. Vivó, A. Del Arco et al., “Metabotropic glutamate mGlu5 receptor-mediated modulation of the ventral striopallidal GABA pathway in rats. Interactions with adenosine A2A and dopamine D2 receptors,” Neuroscience Letters, vol. 324, no. 2, pp. 154–158, 2002. View at Publisher · View at Google Scholar · View at Scopus
  109. C. L. Adams, M. S. Cowen, J. L. Short, and A. J. Lawrence, “Combined antagonism of glutamate mGlu5 and adenosine A2A receptors interact to regulate alcohol-seeking in rats,” International Journal of Neuropsychopharmacology, vol. 11, no. 2, pp. 229–241, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Nishi, F. Liu, S. Matsuyama et al., “Metabotropic mGlu5 receptors regulate adenosine A2A receptor signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 3, pp. 1322–1327, 2003. View at Publisher · View at Google Scholar · View at Scopus
  111. L. H. Corbit, H. Nie, and P. H. Janak, “Habitual alcohol seeking: time course and the contribution of subregions of the dorsal striatum,” Biol Psychiatry, vol. 72, no. 5, pp. 389–395, 2012. View at Google Scholar
  112. J. W. Grimm, B. T. Hope, R. A. Wise, and Y. Shaham, “Incubation of cocaine craving after withdrawal,” Nature, vol. 412, no. 6843, pp. 141–142, 2001. View at Publisher · View at Google Scholar · View at Scopus
  113. W. M. Freeman, K. M. Patel, R. M. Brucklacher et al., “Persistent alterations in mesolimbic gene expression with abstinence from cocaine self-administration,” Neuropsychopharmacology, vol. 33, no. 8, pp. 1807–1817, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. M. H. James, J. L. Charnley, J. R. Flynn, D. W. Smith, and C. V. Dayas, “Propensity to “relapse” following exposure to cocaine cues is associated with the recruitment of specific thalamic and epithalamic nuclei,” Neuroscience, vol. 199, pp. 235–242, 2011. View at Google Scholar
  115. B. Kolb, G. Gorny, Y. Li, A. N. Samaha, and T. E. Robinson, “Amphetamine or cocaine limits the ability of later experience to promote structural plasticity in the neocortex and nucleus accumbens,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 18, pp. 10523–10528, 2003. View at Publisher · View at Google Scholar · View at Scopus
  116. M. B. Ghasemzadeh, P. Vasudevan, C. Giles, A. Purgianto, and C. Seubert, “Glutamatergic plasticity in medial prefrontal cortex and ventral tegmental area following extended-access cocaine self-administration,” Brain Research, vol. 1413, pp. 60–71, 2011. View at Google Scholar
  117. P. W. Kalivas, “The glutamate homeostasis hypothesis of addiction,” Nature Reviews Neuroscience, vol. 10, no. 8, pp. 561–572, 2009. View at Publisher · View at Google Scholar · View at Scopus
  118. M. E. Bouton, “Context and behavioral processes in extinction,” Learning and Memory, vol. 11, no. 5, pp. 485–494, 2004. View at Publisher · View at Google Scholar · View at Scopus
  119. Y. X. Xue, Y. X. Luo, P. Wu, H. S. Shi, and L. F. Xue, “A memory retrieval-extinction procedure to prevent drug craving and relapse,” Science, vol. 336, no. 6078, pp. 241–245, 2012. View at Google Scholar
  120. N. D. Volkow and M. Muenke, “The genetics of addictionHum Genet,” Human Genetics, vol. 131, no. 6, pp. 773–777, 2012. View at Google Scholar
  121. M. K. Ho, D. Goldman, A. Heinz et al., “Breaking barriers in the genomics and pharmacogenetics of drug addiction,” Clinical Pharmacology and Therapeutics, vol. 88, no. 6, pp. 779–791, 2010. View at Publisher · View at Google Scholar · View at Scopus
  122. K. A. Urbanoski and J. F. Kelly, “Understanding genetic risk for substance use and addiction: a guide for non-geneticists,” Clinical Psychology Review, vol. 32, no. 1, pp. 60–70, 2012. View at Google Scholar
  123. C. Y. Li, X. Mao, and L. Wei, “Genes and (common) pathways underlying drug addiction,” PLoS Computational Biology, vol. 4, no. 1, article e2, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. D. M. Dick and T. Foroud, “Candidate genes for alcohol dependence: a review of genetic evidence from human studies,” Alcoholism: Clinical and Experimental Research, vol. 27, no. 5, pp. 868–879, 2003. View at Publisher · View at Google Scholar · View at Scopus
  125. R. Van Der Veen, P. V. Piazza, and V. Deroche-Gamonet, “Gene-environment interactions in vulnerability to cocaine intravenous self-administration: a brief social experience affects intake in DBA/2J but not in C57BL/6J mice,” Psychopharmacology, vol. 193, no. 2, pp. 179–186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  126. T. Muramatsu, W. Zu-Cheng, F. Yi-Ru et al., “Alcohol and aldehyde dehydrogenase genotypes and drinking behavior of Chinese living in Shanghai,” Human Genetics, vol. 96, no. 2, pp. 151–154, 1995. View at Publisher · View at Google Scholar · View at Scopus
  127. G. Schumann, M. Johann, J. Frank et al., “Systematic analysis of glutamatergic neurotransmission genes in alcohol dependence and adolescent risky drinking behavior,” Archives of General Psychiatry, vol. 65, no. 7, pp. 826–838, 2008. View at Publisher · View at Google Scholar · View at Scopus
  128. X. Xuei, L. Flury-Wetherill, D. Dick et al., “GABRR1 and GABRR2, encoding the GABA-A receptor subunits ρ1 and ρ2, are associated with alcohol dependence,” American Journal of Medical Genetics, Part B, vol. 153, no. 2, pp. 418–427, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. H. R. Luo, Z. F. Hou, J. Wu, Y. P. Zhang, and Y. J. Y. Wan, “Evolution of the DRD2 gene haplotype and its association with alcoholism in Mexican Americans,” Alcohol, vol. 36, no. 2, pp. 117–125, 2005. View at Publisher · View at Google Scholar · View at Scopus
  130. L. Wetherill, M. A. Schuckit, V. Hesselbrock et al., “Neuropeptide Y receptor genes are associated with alcohol dependence, alcohol withdrawal phenotypes, and cocaine dependence,” Alcoholism: Clinical and Experimental Research, vol. 32, no. 12, pp. 2031–2040, 2008. View at Publisher · View at Google Scholar · View at Scopus
  131. P. Gorwood, Y. Le Strat, N. Ramoz, C. Dubertret, and J. M. Moalic, “Genetics of dopamine receptors and drug addiction,” Human Genetics, vol. 131, no. 6, pp. 803–822, 2012. View at Google Scholar
  132. M. Kapoor, J. C. Wang, S. Bertelsen, K. Bucholz, and J. P. Budde, “Variants located upstream of CHRNB4 on chromosome 15q25.1 are associated with age at onset of daily smoking and habitual smoking,” PLoS One, vol. 7, no. 3, Article ID e33513, 2012. View at Google Scholar
  133. W. Huang, J. Z. Ma, T. J. Payne, J. Beuten, R. T. Dupont, and M. D. Li, “Significant association of DRD1 with nicotine dependence,” Human Genetics, vol. 123, no. 2, pp. 133–140, 2008. View at Publisher · View at Google Scholar · View at Scopus
  134. W. Huang, T. J. Payne, J. Z. Ma et al., “Significant association of ANKK1 and detection of a functional polymorphism with nicotine dependence in an African-American sample,” Neuropsychopharmacology, vol. 34, no. 2, pp. 319–330, 2009. View at Publisher · View at Google Scholar · View at Scopus
  135. W. Huang, T. J. Payne, J. Z. Ma, and M. D. Li, “A functional polymorphism, rs6280, in DRD3 is significantly associated with nicotine dependence in European-American smokers,” American Journal of Medical Genetics, Part B, vol. 147, no. 7, pp. 1109–1115, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. Q. Xu, W. Huang, T. J. Payne, J. Z. Ma, and M. D. Li, “Detection of genetic association and a functional polymorphism of dynamin 1 gene with nicotine dependence in European and African Americans,” Neuropsychopharmacology, vol. 34, no. 5, pp. 1351–1359, 2009. View at Publisher · View at Google Scholar · View at Scopus
  137. H. C. Liu, C. K. Chen, S. J. Leu, H. T. Wu, and S. K. Lin, “Association between dopamine receptor D1 A-48G polymorphism and methamphetamine abuse,” Psychiatry and Clinical Neurosciences, vol. 60, no. 2, pp. 226–231, 2006. View at Publisher · View at Google Scholar · View at Scopus
  138. R. A. Moyer, D. Wang, A. C. Papp et al., “Intronic polymorphisms affecting alternative splicing of human dopamine D2 receptor are associated with cocaine abuse,” Neuropsychopharmacology, vol. 36, no. 4, pp. 753–762, 2011. View at Publisher · View at Google Scholar · View at Scopus
  139. O. Levran, V. Yuferov, and M. J. Kreek, “The genetics of the opioid system and specific drug addictions,” Human Genetics, vol. 131, no. 6, pp. 823–842, 2012. View at Google Scholar
  140. U. E. Lang, T. Sander, F. W. Lohoff et al., “Association of the met66 allele of brain-derived neurotrophic factor (BDNF) with smoking,” Psychopharmacology, vol. 190, no. 4, pp. 433–439, 2007. View at Publisher · View at Google Scholar · View at Scopus
  141. H. Hou, Z. Qing, S. Jia, X. Zhang, S. Hu, and J. Hu, “Influence of brain-derived neurotrophic factor (Val66Met) genetic polymorphism on the ages of onset for heroin abuse in males,” Brain Research, vol. 1353, pp. 245–248, 2010. View at Publisher · View at Google Scholar · View at Scopus
  142. A. Grzywacz, A. Samochowiec, A. Ciechanowicz, and J. Samochowiec, “Family-based study of brain-derived neurotrophic factor (BDNF) gene polymorphism in alcohol dependence,” Pharmacological Reports, vol. 62, no. 5, pp. 938–941, 2010. View at Google Scholar · View at Scopus
  143. L. A. Briand, F. S. Lee, J. A. Blendy, and R. C. Pierce, “Enhanced extinction of cocaine seeking in brain-derived neurotrophic factor Val66Met knock-in mice,” European Journal of Neuroscience, vol. 35, no. 6, pp. 932–939, 2012. View at Google Scholar
  144. T. Cigler, K. Steven Laforge, P. F. McHugh, S. U. Kapadia, S. M. Leal, and M. J. Kreek, “Novel and previously reported single-nucleotide polymorphisms in the human 5-HT1B receptor gene: no association with cocaine or alcohol abuse or dependence,” American Journal of Medical Genetics, vol. 105, no. 6, pp. 489–497, 2001. View at Publisher · View at Google Scholar · View at Scopus
  145. J. P. Dahl, J. F. Cubells, R. Ray et al., “Analysis of variations in the tryptophan hydroxylase-2 (TPH2) gene in cocaine dependence,” Addiction Biology, vol. 11, no. 1, pp. 76–83, 2006. View at Publisher · View at Google Scholar · View at Scopus
  146. A. I. Herman, T. S. Conner, R. F. Anton, J. Gelernter, H. R. Kranzler, and J. Covault, “Variation in the gene encoding the serotonin transporter is associated with a measure of sociopathy in alcoholics,” Addiction Biology, vol. 16, no. 1, pp. 124–132, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. U. E. Ghitza, R. B. Rothman, D. A. Gorelick, J. E. Henningfield, and M. H. Baumann, “Serotonergic responsiveness in human cocaine users,” Drug and Alcohol Dependence, vol. 86, no. 2-3, pp. 207–213, 2007. View at Publisher · View at Google Scholar · View at Scopus
  148. R. Kryger and P. A. Wilce, “The effects of alcoholism on the human basolateral amygdala,” Neuroscience, vol. 167, no. 2, pp. 361–371, 2010. View at Publisher · View at Google Scholar · View at Scopus
  149. D. N. Albertson, B. Pruetz, C. J. Schmidt, D. M. Kuhn, G. Kapatos, and M. J. Bannon, “Gene expression profile of the nucleus accumbens of human cocaine abusers: evidence for dysregulation of myelin,” Journal of Neurochemistry, vol. 88, no. 5, pp. 1211–1219, 2004. View at Publisher · View at Google Scholar · View at Scopus
  150. W. X. Tang, W. H. Fasulo, D. C. Mash, and S. E. Hemby, “Molecular profiling of midbrain dopamine regions in cocaine overdose victims,” Journal of Neurochemistry, vol. 85, no. 4, pp. 911–924, 2003. View at Google Scholar · View at Scopus
  151. J. Wang, W. Cui, J. Wei, D. Sun, and R. Gutala, “Genome-wide expression analysis reveals diverse effects of acute nicotine exposure on neuronal function-related genes and pathways,” Front Psychiatry, vol. 2, no. 5, pp. 1–18, 2011. View at Google Scholar
  152. M. E. Lull, W. M. Freeman, K. E. Vrana, and D. C. Mash, “Correlating human and animal studies of cocaine abuse and gene expression,” Annals of the New York Academy of Sciences, vol. 1141, pp. 58–75, 2008. View at Publisher · View at Google Scholar · View at Scopus
  153. W. M. Freeman, M. E. Lull, K. M. Patel et al., “Gene expression changes in the medial prefrontal cortex and nucleus accumbens following abstinence from cocaine self-administration,” BMC Neuroscience, vol. 11, article 29, 2010. View at Publisher · View at Google Scholar · View at Scopus
  154. M. E. Lull, M. S. Erwin, D. Morgan, D. C. S. Roberts, K. E. Vrana, and W. M. Freeman, “Persistent proteonnic alterations in the medial prefrontal cortex with abstinence from cocaine self-administration,” Proteomics, vol. 3, no. 4, pp. 462–472, 2009. View at Publisher · View at Google Scholar · View at Scopus
  155. A. L. Brown, J. R. Flynn, D. W. Smith, and C. V. Dayas, “Down-regulated striatal gene expression for synaptic plasticity-associated proteins in addiction and relapse vulnerable animals,” International Journal of Neuropsychopharmacology, vol. 14, no. 8, pp. 1099–1110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  156. T. Timmusk, K. Palm, M. Metsis et al., “Multiple promoters direct tissue-specific expression of the rat BDNF gene,” Neuron, vol. 10, no. 3, pp. 475–489, 1993. View at Publisher · View at Google Scholar · View at Scopus
  157. Q. R. Liu, L. Lu, X. G. Zhu, J. P. Gong, Y. Shaham, and G. R. Uhl, “Rodent BDNF genes, novel promoters, novel splice variants, and regulation by cocaine,” Brain Research, vol. 1067, no. 1, pp. 1–12, 2006. View at Publisher · View at Google Scholar · View at Scopus
  158. M. Sathanoori, B. G. Dias, A. R. Nair, S. B. Banerjee, S. Tole, and V. A. Vaidya, “Differential regulation of multiple brain-derived neurotrophic factor transcripts in the postnatal and adult rat hippocampus during development, and in response to kainate administration,” Molecular Brain Research, vol. 130, no. 1-2, pp. 170–177, 2004. View at Publisher · View at Google Scholar · View at Scopus
  159. M. Metsis, T. Timmusk, E. Arenas, and H. Persson, “Differential usage of multiple brain-derived neurotrophic factor promoters in the rat brain following neuronal activation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 19, pp. 8802–8806, 1993. View at Publisher · View at Google Scholar · View at Scopus
  160. C. Chiaruttini, M. Sonego, G. Baj, M. Simonato, and E. Tongiorgi, “BDNF mRNA splice variants display activity-dependent targeting to distinct hippocampal laminae,” Molecular and Cellular Neuroscience, vol. 37, no. 1, pp. 11–19, 2008. View at Publisher · View at Google Scholar · View at Scopus
  161. X. Jiang, J. Zhou, D. C. Mash, A. M. Marini, and R. H. Lipsky, “Human BDNF isoforms are differentially expressed in cocaine addicts and are sorted to the regulated secretory pathway independent of the Met66 substitution,” NeuroMolecular Medicine, vol. 11, no. 1, pp. 1–12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  162. C. L. Walters, Y. C. Kuo, and J. A. Blendy, “Differential distribution of CREB in the mesolimbic dopamine reward pathway,” Journal of Neurochemistry, vol. 87, no. 5, pp. 1237–1244, 2003. View at Publisher · View at Google Scholar · View at Scopus
  163. W. A. Carlezon Jr., J. Thome, V. G. Olson et al., “Regulation of cocaine reward by CREB,” Science, vol. 282, no. 5397, pp. 2272–2275, 1998. View at Publisher · View at Google Scholar · View at Scopus
  164. H. B. Madsen, S. Navaratnarajah, J. Farrugia et al., “CREB1 and CREB-binding protein in striatal medium spiny neurons regulate behavioural responses to psychostimulants,” Psychopharmacology, vol. 219, no. 3, pp. 699–713, 2012. View at Publisher · View at Google Scholar · View at Scopus
  165. C. S. McPherson, T. Mantamadiotis, S. S. Tan, and A. J. Lawrence, “Deletion of CREB1 from the dorsal telencephalon reduces motivational properties of cocaine,” Cerebral Cortex, vol. 20, no. 4, pp. 941–952, 2010. View at Publisher · View at Google Scholar · View at Scopus
  166. E. J. Nestler, M. Barrot, and D. W. Self, “ΔFosB: a sustained molecular switch for addiction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 20, pp. 11042–11046, 2001. View at Publisher · View at Google Scholar · View at Scopus
  167. G. B. Kaplan, K. A. Leite-Morris, W. Fan, A. J. Young, and M. D. Guy, “Opiate sensitization induces FosB/DeltaFosB expression in prefrontal cortical, striatal and amygdala brain regions,” PLoS One, vol. 6, no. 8, Article ID e23574, 2011. View at Google Scholar
  168. C. A. McClung, P. G. Ulery, L. I. Perrotti, V. Zachariou, O. Berton, and E. J. Nestler, “ΔfosB: a molecular switch for long-term adaptation in the brain,” Molecular Brain Research, vol. 132, no. 2, pp. 146–154, 2004. View at Publisher · View at Google Scholar · View at Scopus
  169. E. B. Larson, F. Akkentli, S. Edwards et al., “Striatal regulation of ΔfosB, FosB, and cFos during cocaine self-administration and withdrawal,” Journal of Neurochemistry, vol. 115, no. 1, pp. 112–122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  170. B. T. Hope, H. E. Nye, M. B. Kelz et al., “Induction of a long-lasting AP-1 complex composed of altered fos-like proteins in brain by chronic cocaine and other chronic treatments,” Neuron, vol. 13, no. 5, pp. 1235–1244, 1994. View at Publisher · View at Google Scholar · View at Scopus
  171. D. Damez-Werno, Q. LaPlant, H. Sun, K. Scobie, and D. Dietz, “Drug experience epigenetically primes Fosb gene inducibility in rat nucleus accumbens,” The Journal of Neuroscience, vol. 32, no. 30, pp. 10267–10272, 2012. View at Google Scholar
  172. E. J. Nestler, “The neurobiology of cocaine addiction,” Science, vol. 3, no. 1, pp. 4–10, 2005. View at Google Scholar · View at Scopus
  173. M. B. Kelz, J. Chen, W. A. Carlezon et al., “Expression of the transcription factor ΔFosB in the brain controls sensitivity to cocaine,” Nature, vol. 401, no. 6750, pp. 272–276, 1999. View at Publisher · View at Google Scholar · View at Scopus
  174. C. R. Colby, K. Whisler, C. Steffen, E. J. Nestler, and D. W. Self, “Striatal cell type-specific overexpression of ΔFosB enhances incentive for cocaine,” Journal of Neuroscience, vol. 23, no. 6, pp. 2488–2493, 2003. View at Google Scholar · View at Scopus
  175. B. A. Nic Dhonnchadha, B. F. Lovascio, N. Shrestha, A. Lin, and K. A. Leite-Morris, “Changes in expression of c-Fos protein following cocaine-cue extinction learning,” Behavioural Brain Research, vol. 234, no. 1, pp. 100–106, 2012. View at Google Scholar
  176. V. Vialou, I. Maze, W. Renthal et al., “Serum response factor promotes resilience to chronic social stress through the induction of ΔFosB,” Journal of Neuroscience, vol. 30, no. 43, pp. 14585–14592, 2010. View at Publisher · View at Google Scholar · View at Scopus
  177. V. Vialou, J. Feng, A. J. Robison, S. M. Ku, and D. Ferguson, “Serum response factor and cAMP response element binding protein are both required for cocaine induction of deltaFosB,” Journal of Neuroscience, vol. 32, no. 22, pp. 7577–7584, 2012. View at Google Scholar
  178. C. C. Y. Wong, J. Mill, and C. Fernandes, “Drugs and addiction: an introduction to epigenetics,” Addiction, vol. 106, no. 3, pp. 480–489, 2011. View at Publisher · View at Google Scholar · View at Scopus
  179. I. Maze and E. J. Nestler, “The epigenetic landscape of addiction,” Annals of the New York Academy of Sciences, vol. 1216, no. 1, pp. 99–113, 2011. View at Publisher · View at Google Scholar · View at Scopus
  180. W. Renthal and E. J. Nestler, “Epigenetic mechanisms in drug addiction,” Trends in Molecular Medicine, vol. 14, no. 8, pp. 341–350, 2008. View at Publisher · View at Google Scholar · View at Scopus
  181. R. K. Ng and J. B. Gurdon, “Epigenetic inheritance of cell differentiation status,” Cell Cycle, vol. 7, no. 9, pp. 1173–1177, 2008. View at Google Scholar · View at Scopus
  182. Z. Kaminsky, A. Petronis, S. C. Wang et al., “Epigenetics of personality traits: an illustrative study of identical twins discordant for risk-taking behavior,” Twin Research and Human Genetics, vol. 11, no. 1, pp. 1–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  183. S. C. Pandey, R. Ugale, H. Zhang, L. Tang, and A. Prakash, “Brain chromatin remodeling: a novel mechanism of alcoholism,” Journal of Neuroscience, vol. 28, no. 14, pp. 3729–3737, 2008. View at Publisher · View at Google Scholar · View at Scopus
  184. M. Pascual, J. Boix, V. Felipo, and C. Guerri, “Repeated alcohol administration during adolescence causes changes in the mesolimbic dopaminergic and glutamatergic systems and promotes alcohol intake in the adult rat,” Journal of Neurochemistry, vol. 108, no. 4, pp. 920–931, 2009. View at Publisher · View at Google Scholar · View at Scopus
  185. F. A. Schroeder, K. L. Penta, A. Matevossian et al., “Drug-induced activation of dopamine D1 receptor signaling and inhibition of class I/II histone deacetylase induce chromatin remodeling in reward circuitry and modulate cocaine-related behaviors,” Neuropsychopharmacology, vol. 33, no. 12, pp. 2981–2992, 2008. View at Publisher · View at Google Scholar · View at Scopus
  186. L. D. Moore, T. Le, and G. Fan, “DNA methylation and its basic function,” Neuropsychopharmacology. In press. View at Publisher · View at Google Scholar
  187. W. Tian, M. Zhao, M. Li, T. Song, and M. Zhang, “Reversal of cocaine-conditioned place preference through methyl supplementation in mice: altering global DNA methylation in the prefrontal cortex,” PLoS One, vol. 7, no. 3, Article ID e33435, 2012. View at Google Scholar
  188. P. Bali, H. I. Im, and P. J. Kenny, “Methylation, memory and addiction,” Epigenetics, vol. 6, no. 6, pp. 671–674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  189. K. Anier, K. Malinovskaja, A. Aonurm-Helm, A. Zharkovsky, and A. Kalda, “DNA methylation regulates cocaine-induced behavioral sensitization in mice,” Neuropsychopharmacology, vol. 35, no. 12, pp. 2450–2461, 2010. View at Publisher · View at Google Scholar · View at Scopus
  190. V. Nieratschker, M. Grosshans, J. Frank, J. Strohmaier, and C. von der Goltz, “Epigenetic alteration of the dopamine transporter gene in alcohol-dependent patients is associated with age,” Addiction Biology. In press. View at Publisher · View at Google Scholar
  191. M. M. Taqi, I. Bazov, H. Watanabe et al., “Prodynorphin CpG-SNPs associated with alcohol dependence: elevated methylation in the brain of human alcoholics,” Addiction Biology, vol. 16, no. 3, pp. 499–509, 2011. View at Publisher · View at Google Scholar · View at Scopus
  192. A. Kumar, K. H. Choi, W. Renthal et al., “Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum,” Neuron, vol. 48, no. 2, pp. 303–314, 2005. View at Publisher · View at Google Scholar · View at Scopus
  193. W. Renthal, A. Kumar, G. Xiao et al., “Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins,” Neuron, vol. 62, no. 3, pp. 335–348, 2009. View at Publisher · View at Google Scholar · View at Scopus
  194. I. Maze, H. E. Covingtoni, D. M. Dietz et al., “Essential role of the histone methyltransferase G9a in cocaine-induced plasticity,” Science, vol. 327, no. 5962, pp. 213–216, 2010. View at Publisher · View at Google Scholar · View at Scopus
  195. W. Renthal and E. J. Nestler, “Histone acetylation in drug addiction,” Seminars in Cell and Developmental Biology, vol. 20, no. 4, pp. 387–394, 2009. View at Publisher · View at Google Scholar · View at Scopus
  196. L. Wang, Z. Lv, Z. Hu et al., “Chronic cocaine-induced H3 acetylation and transcriptional activation of CaMKIIα in the nucleus accumbens is critical for motivation for drug reinforcement,” Neuropsychopharmacology, vol. 35, no. 4, pp. 913–928, 2010. View at Publisher · View at Google Scholar · View at Scopus
  197. Q. LaPlant and E. J. Nestler, “CRACKing the histone code: cocaine's effects on chromatin structure and function,” Hormones and Behavior, vol. 59, no. 3, pp. 321–330, 2011. View at Publisher · View at Google Scholar · View at Scopus
  198. A. A. Levine, Z. Guan, A. Barco, S. Xu, E. R. Kandel, and J. H. Schwartz, “CREB-binding protein controls response to cocaine by acetylating histones at the fosB promoter in the mouse striatum,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 52, pp. 19186–19191, 2005. View at Publisher · View at Google Scholar · View at Scopus
  199. A. Levine, Y. Huang, B. Drisaldi, E. A. Griffin Jr., and D. D. Pollak, “Molecular mechanism for a gateway drug: epigenetic changes initiated by nicotine prime gene expression by cocaine,” Science Translational Medicine, vol. 3, no. 107, pp. 107–109, 2011. View at Google Scholar
  200. S. C. McQuown and M. A. Wood, “Epigenetic regulation in substance use disorders,” Current Psychiatry Reports, vol. 12, no. 2, pp. 145–153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  201. I. Ponomarev, S. Wang, L. Zhang, R. A. Harris, and R. D. Mayfield, “Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence,” Journal of Neuroscience, vol. 32, no. 5, pp. 1884–1897, 2012. View at Google Scholar
  202. M. Qiang, A. Denny, J. Chen, M. K. Ticku, B. Yan, and G. Henderson, “The site specific demethylation in the 5′-regulatory area of NMDA receptor 2B subunit gene associated with CIE-induced up-regulation of transcription,” PLoS ONE, vol. 5, no. 1, Article ID e8798, 2010. View at Publisher · View at Google Scholar · View at Scopus
  203. M. Qiang, A. Denny, M. Lieu, S. Carreon, and J. Li, “Histone H3K9 modifications are a local chromatin event involved in ethanol-induced neuroadaptation of the NR2B gene,” Epigenetics, vol. 6, no. 9, pp. 1095–1104, 2011. View at Google Scholar
  204. H. Tamaru and E. U. Selker, “A histone H3 methyltransferase controls DNA methylation in Neurospora crassa,” Nature, vol. 414, no. 6861, pp. 277–283, 2001. View at Publisher · View at Google Scholar · View at Scopus
  205. Y. D. Black, F. R. Maclaren, A. V. Naydenov, W. A. Carlezon, M. G. Baxter, and C. Konradi, “Altered attention and prefrontal cortex gene expression in rats after binge-like exposure to cocaine during adolescence,” Journal of Neuroscience, vol. 26, no. 38, pp. 9656–9665, 2006. View at Publisher · View at Google Scholar · View at Scopus
  206. E. Salta and B. De Strooper, “Non-coding RNAs with essential roles in neurodegenerative disorders,” Lancet Neurology, vol. 11, no. 2, pp. 189–200, 2012. View at Google Scholar
  207. R. Zhang, L. Zhang, and W. Yu, “Genome-wide expression of non-coding RNA and global chromatin modification,” Acta Biochimica et Biophysica Sinica, vol. 44, no. 1, pp. 40–47, 2012. View at Google Scholar
  208. J. Xie, S. L. Ameres, R. Friedline, J. H. Hung, and Y. Zhang, “Long-term, efficient inhibition of microRNA function in mice using rAAV vectors,” Nature Methods, vol. 9, no. 4, pp. 403–409, 2012. View at Google Scholar
  209. R. C. Lee, R. L. Feinbaum, and V. Ambros, “The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14,” Cell, vol. 75, no. 5, pp. 843–854, 1993. View at Publisher · View at Google Scholar · View at Scopus
  210. V. N. Kim, J. Han, and M. C. Siomi, “Biogenesis of small RNAs in animals,” Nature Reviews Molecular Cell Biology, vol. 10, no. 2, pp. 126–139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  211. R. J. Jackson and N. Standart, “How do microRNAs regulate gene expression?” Science, vol. 2007, no. 367, article re1, 2007. View at Publisher · View at Google Scholar · View at Scopus
  212. N. Standart and R. J. Jackson, “MicroRNAs repress translation of m7 Gppp-capped target mRNAs in vitro by inhibiting initiation and promoting deadenylation,” Genes and Development, vol. 21, no. 16, pp. 1975–1982, 2007. View at Publisher · View at Google Scholar · View at Scopus
  213. W. Filipowicz, S. N. Bhattacharyya, and N. Sonenberg, “Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?” Nature Reviews Genetics, vol. 9, no. 2, pp. 102–114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  214. R. F. Place, L. C. Li, D. Pookot, E. J. Noonan, and R. Dahiya, “MicroRNA-373 induces expression of genes with complementary promoter sequences,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 5, pp. 1608–1613, 2008. View at Publisher · View at Google Scholar · View at Scopus
  215. R. A. Shivdasani, “MicroRNAs: regulators of gene expression and cell differentiation,” Blood, vol. 108, no. 12, pp. 3646–3653, 2006. View at Publisher · View at Google Scholar · View at Scopus
  216. J. Karr, V. Vagin, K. Chen et al., “Regulation of glutamate receptor subunit availability by microRNAs,” Journal of Cell Biology, vol. 185, no. 4, pp. 685–697, 2009. View at Publisher · View at Google Scholar · View at Scopus
  217. J. Kocerh, M. Ali Faghihi, M. A. Lopez-Toledano et al., “MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 9, pp. 3507–3512, 2009. View at Publisher · View at Google Scholar · View at Scopus
  218. K. Wibrand, D. Panja, A. Tiron et al., “Differential regulation of mature and precursor microRNA expression by NMDA and metabotropic glutamate receptor activation during LTP in the adult dentate gyrus in vivo,” European Journal of Neuroscience, vol. 31, no. 4, pp. 636–645, 2010. View at Publisher · View at Google Scholar · View at Scopus
  219. W. Konopka, A. Kiryk, M. Novak et al., “MicroRNA loss enhances learning and memory in mice,” Journal of Neuroscience, vol. 30, no. 44, pp. 14835–14842, 2010. View at Publisher · View at Google Scholar · View at Scopus
  220. C. S. Park and S. J. Tang, “Regulation of microRNA expression by induction of bidirectional synaptic plasticity,” Journal of Molecular Neuroscience, vol. 38, no. 1, pp. 50–56, 2009. View at Publisher · View at Google Scholar · View at Scopus
  221. W. Huang and M. D. Li, “Differential allelic expression of dopamine D1 receptor gene (DRD1) is modulated by microRNA miR-504,” Biological Psychiatry, vol. 65, no. 8, pp. 702–705, 2009. View at Publisher · View at Google Scholar · View at Scopus
  222. H. Kawashima, T. Numakawa, E. Kumamaru et al., “Glucocorticoid attenuates brain-derived neurotrophic factor-dependent upregulation of glutamate receptors via the suppression of microRNA-132 expression,” Neuroscience, vol. 165, no. 4, pp. 1301–1311, 2010. View at Publisher · View at Google Scholar · View at Scopus
  223. J. Kim, K. Inoue, J. Ishii et al., “A microRNA feedback circuit in midbrain dopamine neurons,” Science, vol. 317, no. 5842, pp. 1220–1224, 2007. View at Publisher · View at Google Scholar · View at Scopus
  224. W. Huang and M. D. Li, “Nicotine modulates expression of miR-140, which targets the 3-untranslated region of dynamin 1 gene (Dnm1),” International Journal of Neuropsychopharmacology, vol. 12, no. 4, pp. 537–546, 2009. View at Publisher · View at Google Scholar · View at Scopus
  225. V. Chandrasekar and J. L. Dreyer, “microRNAs miR-124, let-7d and miR-181a regulate cocaine-induced Plasticity,” Molecular and Cellular Neuroscience, vol. 42, no. 4, pp. 350–362, 2009. View at Publisher · View at Google Scholar · View at Scopus
  226. R. C. Miranda, A. Z. Pietrzykowski, Y. Tang et al., “MicroRNAs: master regulators of ethanol abuse and toxicity?” Alcoholism: Clinical and Experimental Research, vol. 34, no. 4, pp. 575–587, 2010. View at Publisher · View at Google Scholar · View at Scopus
  227. A. Z. Pietrzykowski, “The Role of microRNAs in Drug Addiction. A Big Lesson from Tiny Molecules,” International Review of Neurobiology, vol. 91, pp. 1–24, 2010. View at Publisher · View at Google Scholar · View at Scopus
  228. A. Z. Pietrzykowski, R. M. Friesen, G. E. Martin et al., “Posttranscriptional Regulation of BK Channel Splice Variant Stability by miR-9 Underlies Neuroadaptation to Alcohol,” Neuron, vol. 59, no. 2, pp. 274–287, 2008. View at Publisher · View at Google Scholar · View at Scopus
  229. J. E. Eipper-Mains, D. D. Kiraly, D. Palakodeti, R. E. Mains, B. A. Eipper, and B. R. Graveley, “microRNA-Seq reveals cocaine-regulated expression of striatal microRNAs,” RNA, vol. 17, no. 8, pp. 1529–1543, 2011. View at Publisher · View at Google Scholar · View at Scopus
  230. V. Chandrasekar and J. L. Dreyer, “Regulation of MiR-124, Let-7d, and MiR-181a in the accumbens affects the expression, extinction, and reinstatement of cocaine-induced conditioned place preference,” Neuropsychopharmacology, vol. 36, no. 6, pp. 1149–1164, 2011. View at Publisher · View at Google Scholar · View at Scopus
  231. G. M. Schratt, F. Tuebing, E. A. Nigh et al., “A brain-specific microRNA regulates dendritic spine development,” Nature, vol. 439, no. 7074, pp. 283–289, 2006. View at Publisher · View at Google Scholar · View at Scopus
  232. J. Wu and X. Xie, “Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression,” Genome Biology, vol. 7, no. 9, article R85, 2006. View at Publisher · View at Google Scholar · View at Scopus
  233. N. Vo, M. E. Klein, O. Varlamova et al., “A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 45, pp. 16426–16431, 2005. View at Publisher · View at Google Scholar · View at Scopus
  234. J. A. Hollander, H. I. Im, A. L. Amelio et al., “Striatal microRNA controls cocaine intake through CREB signalling,” Nature, vol. 466, no. 7303, pp. 197–202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  235. P. T. Georgel, R. A. Horowitz-Scherer, N. Adkins, C. L. Woodcock, P. A. Wade, and J. C. Hansen, “Chromatin compaction by human MeCP2. Assembly of novel secondary chromatin structures in the absence of DNA methylation,” Journal of Biological Chemistry, vol. 278, no. 34, pp. 32181–32188, 2003. View at Publisher · View at Google Scholar · View at Scopus
  236. P. L. Jones, G. J. C. Veenstra, P. A. Wade et al., “Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription,” Nature Genetics, vol. 19, no. 2, pp. 187–191, 1998. View at Publisher · View at Google Scholar · View at Scopus
  237. M. Chahrour, Y. J. Sung, C. Shaw et al., “MeCP2, a key contributor to neurological disease, activates and represses transcription,” Science, vol. 320, no. 5880, pp. 1224–1229, 2008. View at Publisher · View at Google Scholar · View at Scopus
  238. Y. Guo, Y. Chen, S. Carreon, and M. Qiang, “Chronic intermittent ethanol exposure and its removal induce a different miRNA expression pattern in primary cortical neuronal cultures,” Alcoholism: Clinical and Experimental Research, vol. 36, no. 6, pp. 1058–1066, 2011. View at Google Scholar
  239. H. I. Im, J. A. Hollander, P. Bali, and P. J. Kenny, “MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212,” Nature Neuroscience, vol. 13, no. 9, pp. 1120–1127, 2010. View at Publisher · View at Google Scholar · View at Scopus
  240. M. D. Li and A. D. van der Vaart, “MicroRNAs in addiction: adaptation's middlemen?” Molecular Psychiatry, vol. 16, no. 12, pp. 1159–1168, 2011. View at Publisher · View at Google Scholar · View at Scopus
  241. M. Miyagishi, M. Hayashi, and K. Taira, “Comparison of the suppressive effects of antisense oligonucleotides and siRNAs directed against the same targets in mammalian cells,” Antisense and Nucleic Acid Drug Development, vol. 13, no. 1, pp. 1–7, 2003. View at Google Scholar · View at Scopus
  242. D. D. Rao, J. S. Vorhies, N. Senzer, and J. Nemunaitis, “siRNA vs. shRNA: similarities and differences,” Advanced Drug Delivery Reviews, vol. 61, no. 9, pp. 746–759, 2009. View at Publisher · View at Google Scholar · View at Scopus
  243. A. Ligeza, A. Wawrzczak-Bargiela, D. Kaminska, M. Korostynski, and R. Przewlocki, “Regulation of ERK1/2 phosphorylation by acute and chronic morphine - Implications for the role of cAMP-responsive element binding factor (CREB)-dependent and Ets-like protein-1 (Elk-1)-dependent transcription; small interfering RNA-based strategy,” FEBS Journal, vol. 275, no. 15, pp. 3836–3849, 2008. View at Publisher · View at Google Scholar · View at Scopus
  244. J. H. Kao, E. Y. K. Huang, and P. L. Tao, “NR2B subunit of NMDA receptor at nucleus accumbens is involved in morphine rewarding effect by siRNA study,” Drug and Alcohol Dependence, vol. 118, no. 2-3, pp. 366–374, 2011. View at Publisher · View at Google Scholar · View at Scopus
  245. A. C. Bonoiu, S. D. Mahajan, H. Ding et al., “Nanotechnology approach for drug addiction therapy: gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 14, pp. 5546–5550, 2009. View at Publisher · View at Google Scholar · View at Scopus
  246. S. Singh, A. S. Narang, and R. I. Mahato, “Subcellular fate and off-target effects of siRNA, shRNA, and miRNA,” Pharmaceutical Research, vol. 28, no. 12, pp. 2996–3015, 2011. View at Google Scholar
  247. M. E. Carter and L. de Lecea, “Optogenetic investigation of neural circuits in vivo,” Trends in Molecular Medicine, vol. 17, no. 4, pp. 197–206, 2011. View at Publisher · View at Google Scholar · View at Scopus
  248. J. J. Mancuso, J. Kim, S. Lee, S. Tsuda, N. B. H. Chow, and G. J. Augustine, “Optogenetic probing of functional brain circuitry,” Experimental Physiology, vol. 96, no. 1, pp. 26–33, 2010. View at Publisher · View at Google Scholar · View at Scopus
  249. E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nature Neuroscience, vol. 8, no. 9, pp. 1263–1268, 2005. View at Publisher · View at Google Scholar · View at Scopus
  250. F. Zhang, L. P. Wang, E. S. Boyden, and K. Deisseroth, “Channelrhodopsin-2 and optical control of excitable cells,” Nature Methods, vol. 3, no. 10, pp. 785–792, 2006. View at Publisher · View at Google Scholar · View at Scopus
  251. K. Deisseroth, G. Feng, A. K. Majewska, G. Miesenböck, A. Ting, and M. J. Schnitzer, “Next-generation optical technologies for illuminating genetically targeted brain circuits,” Journal of Neuroscience, vol. 26, no. 41, pp. 10380–10386, 2006. View at Publisher · View at Google Scholar · View at Scopus
  252. A. M. Aravanis, L. P. Wang, F. Zhang et al., “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” Journal of Neural Engineering, vol. 4, no. 3, pp. S143–S156, 2007. View at Publisher · View at Google Scholar · View at Scopus
  253. P. Hegemann and A. Möglich, “Channelrhodopsin engineering and exploration of new optogenetic tools,” Nature Methods, vol. 8, no. 1, pp. 39–42, 2011. View at Publisher · View at Google Scholar · View at Scopus
  254. J. F. Liewald, M. Brauner, G. J. Stephens et al., “Optogenetic analysis of synaptic function,” Nature Methods, vol. 5, no. 10, pp. 895–902, 2008. View at Publisher · View at Google Scholar · View at Scopus
  255. G. D. Stuber, “Dissecting the neural circuitry of addiction and psychiatric disease with optogenetics,” Neuropsychopharmacology, vol. 35, no. 1, pp. 341–342, 2010. View at Publisher · View at Google Scholar · View at Scopus
  256. V. Gradinaru, F. Zhang, C. Ramakrishnan et al., “Molecular and cellular approaches for diversifying and extending optogenetics,” Cell, vol. 141, no. 1, pp. 154–165, 2010. View at Publisher · View at Google Scholar · View at Scopus
  257. J. A. Cardin, M. Carlén, K. Meletis et al., “Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2,” Nature Protocols, vol. 5, no. 2, pp. 247–254, 2010. View at Publisher · View at Google Scholar · View at Scopus
  258. C. Schultheis, J. F. Liewald, E. Bamberg, G. Nagel, and A. Gottschalk, “Optogenetic long-term manipulation of behavior and animal development,” PLoS ONE, vol. 6, no. 4, Article ID e18766, 2011. View at Publisher · View at Google Scholar · View at Scopus
  259. K. M. Tye and K. Deisseroth, “Optogenetic investigation of neural circuits underlying brain disease in animal models,” Nature Reviews Neuroscience, vol. 13, no. 4, pp. 251–266, 2012. View at Google Scholar
  260. F. Zhang, M. Prigge, F. Beyrière et al., “Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri,” Nature Neuroscience, vol. 11, no. 6, pp. 631–633, 2008. View at Publisher · View at Google Scholar · View at Scopus
  261. F. Zhang, L. P. Wang, M. Brauner et al., “Multimodal fast optical interrogation of neural circuitry,” Nature, vol. 446, no. 7136, pp. 633–639, 2007. View at Publisher · View at Google Scholar · View at Scopus
  262. R. D. Airan, K. R. Thompson, L. E. Fenno, H. Bernstein, and K. Deisseroth, “Temporally precise in vivo control of intracellular signalling,” Nature, vol. 458, no. 7241, pp. 1025–1029, 2009. View at Publisher · View at Google Scholar · View at Scopus
  263. H. C. Tsai, F. Zhang, A. Adamantidis et al., “Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning,” Science, vol. 324, no. 5930, pp. 1080–1084, 2009. View at Publisher · View at Google Scholar · View at Scopus
  264. C. E. Bass, V. P. Grinevich, Z. B. Vance, R. P. Sullivan, K. D. Bonin, and E. A. Budygin, “Optogenetic control of striatal dopamine release in rats,” Journal of Neurochemistry, vol. 114, no. 5, pp. 1344–1352, 2010. View at Publisher · View at Google Scholar · View at Scopus
  265. F. Tecuapetla, J. C. Patel, H. Xenias et al., “Glutamatergic signaling by mesolimbic dopamine neurons in the nucleus accumbens,” Journal of Neuroscience, vol. 30, no. 20, pp. 7105–7110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  266. A. R. Adamantidis, H. C. Tsai, B. Boutrel et al., “Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior,” Journal of Neuroscience, vol. 31, no. 30, pp. 10829–10835, 2011. View at Publisher · View at Google Scholar · View at Scopus
  267. I. B. Witten, E. E. Steinberg, S. Y. Lee, T. J. Davidson, and K. A. Zalocusky, “Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement,” Neuron, vol. 72, no. 5, pp. 721–733, 2011. View at Google Scholar
  268. K. M. Kim, M. V. Baratta, A. Yang, D. Lee, and E. S. Boyden, “Optogenetic mimicry of the transient activation of dopamine neurons by natural reward is sufficient for operant reinforcement,” PLoS One, vol. 7, no. 4, Article ID e33612, 2012. View at Google Scholar
  269. M. K. Lobo, H. E. Covington, D. Chaudhury et al., “Cell type—specific loss of BDNF signaling mimics optogenetic control of cocaine reward,” Science, vol. 330, no. 6002, pp. 385–390, 2010. View at Publisher · View at Google Scholar · View at Scopus
  270. I. B. Witten, S. C. Lin, M. Brodsky et al., “Cholinergic interneurons control local circuit activity and cocaine conditioning,” Science, vol. 330, no. 6011, pp. 1677–1681, 2010. View at Publisher · View at Google Scholar · View at Scopus
  271. T. Tsubota, Y. Ohashi, K. Tamura, A. Sato, and Y. Miyashita, “Optogenetic manipulation of cerebellar purkinje cell activity In Vivo,” PLoS ONE, vol. 6, no. 8, Article ID e22400, 2011. View at Publisher · View at Google Scholar · View at Scopus
  272. J. A. Cardin, “Dissecting local circuits in vivo: integrated optogenetic and electrophysiology approaches for exploring inhibitory regulation of cortical activity,” Journal of Physiology, vol. 106, no. 3-4, pp. 104–111, 2012. View at Google Scholar
  273. J. H. Lee, R. Durand, V. Gradinaru et al., “Global and local fMRI signals driven by neurons defined optogenetically by type and wiring,” Nature, vol. 465, no. 7299, pp. 788–792, 2010. View at Publisher · View at Google Scholar · View at Scopus
  274. I. Kahn, M. Desai, U. Knoblich, J. Bernstein, and M. Henninger, “Characterization of the functional MRI response temporal linearity via optical control of neocortical pyramidal neurons,” Journal of Neuroscience, vol. 31, no. 42, pp. 15086–15091, 2011. View at Google Scholar
  275. M. Desai, I. Kahn, U. Knoblich et al., “Mapping brain networks in awake mice using combined optical neural control and fMRI,” Journal of Neurophysiology, vol. 105, no. 3, pp. 1393–1405, 2011. View at Publisher · View at Google Scholar · View at Scopus