Table of Contents
ISRN Organic Chemistry
Volume 2012 (2012), Article ID 976178, 11 pages
http://dx.doi.org/10.5402/2012/976178
Research Article

Synthesis and Optoelectronic Characterization of Some Star-Shaped Oligomers with Benzene and Triphenylamine Cores

Electroactive Polymers Department, Institute of Macromolecular Chemistry “Petru Poni”, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania

Received 27 April 2012; Accepted 13 June 2012

Academic Editors: F. V. Gonzalez and F. L. Van Delft

Copyright © 2012 Teofilia Ivan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. A. Skotheim and J. R. Reynolds, Handbook of Conducting Polymers, CRC Press, New York, NY, USA, 3rd edition, 2007.
  2. A. G. MacDiarmid, “Synthetic metals: a novel role for organic polymers (Nobel lecture),” Angewandte Chemie, International Edition, vol. 40, pp. 2581–2590, 2001. View at Google Scholar
  3. A. J. Heeger, “Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture),” Angewandte Chemie, International Edition, vol. 40, pp. 2591–2611, 2001. View at Google Scholar
  4. J. Heinze, “Electronically conducting polymers,” Topics in Current Chemistry, vol. 152, pp. 1–47, 1990. View at Publisher · View at Google Scholar
  5. S. J. Higgins, “Conjugated polymers incorporating pendant functional groups-synthesis and characterization,” Chemical Society Reviews, vol. 26, no. 4, pp. 247–257, 1997. View at Publisher · View at Google Scholar
  6. T. Noda, H. Ogawa, N. Noma, and Y. Shirota, “Organic light-emitting diodes using a novel family of amorphous molecular materials containing an oligothiophene moiety as colour-tunable emitting materials,” Journal of Materials Chemistry, vol. 9, no. 9, pp. 2177–2181, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Otsubo, Y. Aso, and K. Takimiya, “Functional oligothiophenes as advanced molecular electronic materials,” Journal of Materials Chemistry, vol. 12, no. 9, pp. 2565–2575, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Nakanishi, Y. Aso, and T. Otsubo, “The longest class of oligothiophenes,” Synthetic Metals, vol. 101, no. 1–3, pp. 604–605, 1999. View at Google Scholar · View at Scopus
  9. D. Sek, E. Grabiec, H. Janeczek et al., “Structure-properties relationship of linear and star-shaped imines with triphenylamine moieties as hole-transporting materials,” Optical Materials, vol. 32, no. 11, pp. 1514–1525, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. D. A. Tomalia, A. M. Naylor, and W. A. Goddard, “Starbust dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter,” Angewandte Chemie, International Edition, vol. 29, no. 2, pp. 138–175, 1990. View at Google Scholar · View at Scopus
  11. A. Kraft, A. C. Grimsdale, and A. B. Holmes, “Electroluminescent conjugated polymers—seeing polymers in a new light,” Angewandte Chemie, International Edition, vol. 37, no. 4, pp. 402–428, 1998. View at Google Scholar · View at Scopus
  12. B. W. D'Andrade and S. R. Forrest, “White organic light-emitting devices for solid-state lighting,” Advanced Materials, vol. 16, no. 18, pp. 1585–1595, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. S. A. Jenekhe, “Excited-state complexes of conjugated polymers,” Advanced Materials, vol. 7, no. 3, pp. 309–311, 1995. View at Google Scholar · View at Scopus
  14. J. S. Miller, “Conducting polymers—materials of commerce,” Advanced Materials, vol. 5, no. 9, pp. 671–676, 1993. View at Google Scholar · View at Scopus
  15. R. L. Carroll and C. B. Gorman, “The genesis of molecular electronics,” Angewandte Chemie, International Edition, vol. 41, no. 23, pp. 4378–4400, 2002. View at Google Scholar
  16. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science, vol. 270, no. 5243, pp. 1789–1791, 1995. View at Google Scholar · View at Scopus
  17. Y. J. Cheng, S. H. Yang, and C. S. Hsu, “Synthesis of conjugated polymers for organic solar cell applications,” Chemical Reviews, vol. 109, no. 11, pp. 5868–5923, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. D. Bhawalkar, G. S. He, and P. N. Prasad, “Nonlinear multiphoton processes in organic and polymeric materials,” Reports on Progress in Physics, vol. 59, no. 9, pp. 1041–1070, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. J. H. Schon, A. Dodabalapur, C. Kloc, and B. Batlogg, “A light-emitting field-effect transistor,” Science, vol. 290, no. 5493, pp. 963–965, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Louie, J. F. Hartwig, and A. F. Fry, “Discrete high molecular weight triarylamine dendrimers prepared by palladium-catalyzed amination,” Journal of the American Chemical Society, vol. 119, no. 48, pp. 11695–11696, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. B. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991. View at Google Scholar · View at Scopus
  22. M. Zheng, F. Bai, and D. J. Zhu, “New light emitting materials: alternating copolymers with hole transport and emitting chromophores,” Journal of Applied Polymer Science, vol. 74, no. 14, pp. 3351–3358, 1999. View at Google Scholar
  23. G. Lai, X. R. Bu, J. Santos, and E. A. Mintz, “Reinvestigation of the Vilsmeier-Haack formylation of triphenylamine,” Synlett, vol. 1997, no. 11, pp. 1275–1276, 1997. View at Google Scholar · View at Scopus
  24. T. Mallegol, S. Gmouh, M. A. A. Meziane, M. Blanchard-Desce, and O. Mongin, “Practical and efficient synthesis of tris(4-formylphenyl)amine, a key building block in materials chemistry,” Synthesis, no. 11, pp. 1771–1774, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Grigoras and L. Stafie, “Synthesis and characterization of linear, branched and hyperbranched triphenylamine-based polyazomethines,” Designed Monomers and Polymers, vol. 12, no. 2, pp. 177–196, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Vacareanu and M. Grigoras, “Synthesis and electrochemical characterization of new linear conjugated arylamine copolymers,” High Performance Polymers, vol. 23, no. 2, pp. 112–124, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Kuwabara, H. Ogawa, H. Inada, and Y. Shirota, “Thermally stable multilayered organic electroluminescent devices using novel starburst molecules, 4,4′,4-tri(N-carbazolyl)triphenylamine (TCTA) and 4,4′,4-tris(3-methylphenylphenyl-amino)triphenylamine (m-MTDATA), as hole-transport materials,” Advanced Materials, vol. 6, no. 9, pp. 677–679, 1994. View at Google Scholar · View at Scopus
  28. K. M. Yeh, C. C. Lee, and Y. Chen, “Poly(4-vinyltriphenylamine): optical, electrochemical properties and its new application as a host material of green phosphorescent Ir(ppy)3 dopant,” Synthetic Metals, vol. 158, no. 14, pp. 565–571, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Saito, S. Ukai, S. Iwatsuki, T. Itoh, and M. Kubo, “Synthesis of soluble poly(arylenevinylene)s carrying various heterocycles as arylene units,” Macromolecules, vol. 28, no. 24, pp. 8363–8367, 1995. View at Google Scholar · View at Scopus
  30. X. Zhang, X. Yu, Y. Sun et al., “Synthesis and nonlinear optical properties of two new two-photon initiators: triphenylamine derivatives,” Optical Materials, vol. 28, no. 12, pp. 1366–1371, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Campaigne and W. L. Archer, “The use of dimethylformamide as a formylation reagent,” Journal of the American Chemical Society, vol. 75, no. 4, pp. 989–991, 1953. View at Google Scholar · View at Scopus
  32. F. H. C. Stewart, “The Preparation of some surface active alcohols containing the anthracene nucleus,” Australian Journal of Chemistry, vol. 13, no. 4, pp. 478–487, 1960. View at Publisher · View at Google Scholar
  33. R. Sander, V. Stuempflen, J. H. Wendorff, and A. Greiner, “Synthesis, properties, and guest-host systems of triphenylamine-based oligo(arylenevinylene)s: advanced materials for LED applications,” Macromolecules, vol. 29, no. 24, pp. 7705–7708, 1996. View at Publisher · View at Google Scholar · View at Scopus
  34. X. Zhang, X. Yu, J. Yao, and M. Jiang, “Synthesis and nonlinear optical properties of two three-branched two-photon polymerization initiators,” Synthetic Metals, vol. 158, no. 21–24, pp. 964–968, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. M. J. Plater and T. Jackson, “Polyaromatic amines. Part 3: synthesis of poly(diarylamino)styrenes and related compounds,” Tetrahedron, vol. 59, no. 25, pp. 4673–4685, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Heller, “Organic liquid scintillators. VI. Substituted distyrylbenzenes: scintillation properties and spectra of absorption and fluorescence,” The Journal of Chemical Physics, vol. 40, no. 10, pp. 2839–2850, 1964. View at Google Scholar · View at Scopus
  37. H. Y. Wang, G. Chen, X. P. Xu, H. Chen, and S. J. Ji, “The synthesis and photophysical properties of novel poly(diarylamino) styrenes,” Dyes and Pigments, vol. 88, no. 3, pp. 358–365, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Jiang, J. Y. Wang, Y. Ma, Y. X. Cui, Q. F. Zhou, and J. Pei, “Large rigid blue-emitting π-conjugated stilbenoid-based dendrimers: synthesis and properties,” Organic Letters, vol. 8, no. 19, pp. 4287–4290, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. E. T. Seo, R. F. Nelson, J. M. Fritsch, L. S. Marcoux, D. W. Leedy, and R. N. Adams, “Anodic oxidation pathways of aromatic amines. Electrochemical and electron paramagnetic resonance studies,” Journal of the American Chemical Society, vol. 88, no. 15, pp. 3498–3503, 1966. View at Google Scholar · View at Scopus
  40. S. C. Creason, J. Wheeler, and R. F. Nelson, “Electrochemical and spectroscopic studies of cation radicals. I. Coupling rates of 4-substituted triphenylaminium ions,” Journal of Organic Chemistry, vol. 37, no. 26, pp. 4440–4446, 1972. View at Google Scholar · View at Scopus
  41. K. Y. Chiu, T. X. Su, J. H. Li, T. H. Lin, G. S. Liou, and S. H. Cheng, “Novel trends of electrochemical oxidation of amino-substituted triphenylamine derivatives,” Journal of Electroanalytical Chemistry, vol. 575, no. 1, pp. 95–101, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Vacareanu and M. Grigoras, “Electrochemical characterization of arylene vinylene oligomers containing triphenylamine and carbazole units,” Journal of Applied Electrochemistry, vol. 40, no. 11, pp. 1967–1975, 2010. View at Publisher · View at Google Scholar · View at Scopus