Table of Contents
ISRN Thermodynamics
Volume 2013 (2013), Article ID 108264, 9 pages
http://dx.doi.org/10.1155/2013/108264
Research Article

Analytical Solution of MHD Stagnation-Point Flow and Heat Transfer of Casson Fluid over a Stretching Sheet with Partial Slip

Department of Mathematics, A.K.P.C Mahavidyalaya, Bengai, Hooghly 712 611, India

Received 21 June 2013; Accepted 13 July 2013

Academic Editors: R. R. Burnette and I. Kim

Copyright © 2013 Samir Kumar Nandy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. C. Sakiadis, “Boundary layer equations for the two-dimensional and axi-symmetric flow,” AIChE Journal, vol. 7, pp. 26–28, 1961. View at Google Scholar
  2. T. C. Chiam, “Stagnation-point flow towards a stretching plate,” Journal of the Physical Society of Japan, vol. 63, no. 6, pp. 2443–2444, 1994. View at Google Scholar · View at Scopus
  3. T. R. Mahapatra and A. S. Gupta, “Magnetohydrodynamic stagnation-point flow towards a stretching sheet,” Acta Mechanica, vol. 152, no. 1–4, pp. 191–196, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. T. R. Mahapatra and A. S. Gupta, “Heat transfer in stagnation-point flow towards a stretching sheet,” Heat and Mass Transfer, vol. 38, no. 6, pp. 517–521, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Reza and A. S. Gupta, “Steady two-dimensional oblique stagnation-point flow towards a stretching surface,” Fluid Dynamics Research, vol. 37, no. 5, pp. 334–340, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Ishak, R. Nazar, N. M. Arifin, and I. Pop, “Mixed convection of the stagnation-point flow towards a stretching vertical permeable sheet,” Malaysian Journal of Mathematical Sciences, vol. 2, pp. 217–226, 2007. View at Google Scholar
  7. C. Y. Wang, “Stagnation flow towards a shrinking sheet,” International Journal of Non-Linear Mechanics, vol. 43, no. 5, pp. 377–382, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. R. A. Van Gorder, K. Vajravelu, and I. Pop, “Hydromagnetic stagnation point flow of a viscous fluid over a stretching or shrinking sheet,” Meccanica, vol. 47, no. 1, pp. 31–50, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. K. R. Rajagopal, T. Y. Na, and A. S. Gupta, “Flow of a viscoelastic fluid over a stretching sheet,” Rheologica Acta, vol. 23, no. 2, pp. 213–215, 1984. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Siddappa and S. Abel, “Non-Newtonian flow past a stretching plate,” Zeitschrift für Angewandte Mathematik und Physik, vol. 36, pp. 47–54, 1985. View at Google Scholar
  11. W. C. Troy, E. A. Overmannll, G. B. Eremont-Rout, and J. P. Keener, “Uniqueness of the flow of second order fluid flow past a stretching sheet,” Quarterly of Applied Mathematics, vol. 44, pp. 753–755, 1987. View at Google Scholar
  12. P. S. Lawrence and B. N. Rao, “The nonuniqueness of the MHD flow of a viscoelastic fluid past a stretching sheet,” Acta Mechanica, vol. 112, no. 1–4, pp. 223–225, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. J. B. McLeod and K. R. Rajagopal, “On the uniqueness of flow of a Navier-Stokes fluid due to a stretching boundary,” Archive for Rational Mechanics and Analysis, vol. 98, no. 4, pp. 385–393, 1987. View at Publisher · View at Google Scholar · View at Scopus
  14. H. I. Andersson, “MHD flow of a viscoelastic fluid past a stretching surface,” Acta Mechanica, vol. 95, no. 1–4, pp. 227–230, 1992. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Rollins and K. Vajravelu, “Heat transfer in a second-order fluid over a continuous stretching surface,” Acta Mechanica, vol. 89, no. 1–4, pp. 167–178, 1991. View at Publisher · View at Google Scholar · View at Scopus
  16. M. S. Abel and P. Veena, “Viscoelastic fluid flow and heat transfer in a porous medium over a stretching sheet,” International Journal of Non-Linear Mechanics, vol. 33, no. 3, pp. 531–538, 1998. View at Google Scholar · View at Scopus
  17. W. P. Walawender, T. Y. Chen, and D. F. Cala, “An approximate casson fluid model for tube flow of blood,” Biorheology, vol. 12, no. 2, pp. 111–124, 1975. View at Google Scholar · View at Scopus
  18. G. W. S. Blair, “An equation for the flow of blood, plasma and serum through glass capillaries,” Nature, vol. 183, no. 4661, pp. 613–614, 1959. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Charm and G. Kurland, “Viscometry of human blood for shear rates of 0–100,000 sec−1,” Nature, vol. 206, no. 4984, pp. 617–618, 1965. View at Publisher · View at Google Scholar · View at Scopus
  20. E. W. Merrill, A. M. Benis, E. R. Gilliland, T. K. Sherwood, and E. W. Salzman, “Pressure-flow relations of human blood in hollow fibers at low flow rates,” Journal of Applied Physiology, vol. 20, no. 5, pp. 954–967, 1965. View at Google Scholar · View at Scopus
  21. D. A. Mc Donald, Blood Flows in Arteries, chapter 2, Arnold, London, UK, 2nd edition, 1974.
  22. C. Y. Wang, “Flow due to a stretching boundary with partial slip—an exact solution of the Navier-Stokes equations,” Chemical Engineering Science, vol. 57, no. 17, pp. 3745–3747, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. H. I. Andersson, “Slip flow past a stretching surface,” Acta Mechanica, vol. 158, no. 1-2, pp. 121–125, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Mukhopadhyay and H. I. Andersson, “Effects of slip and heat transfer analysis of flow over an unsteady stretching surface,” Heat and Mass Transfer, vol. 45, no. 11, pp. 1447–1452, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Fang, J. Zhang, and S. Yao, “Slip MHD viscous flow over a stretching sheet—an exact solution,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 11, pp. 3731–3737, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Mukhopadhyay, “Effects of slip on unsteady mixed convective flow and heat transfer past a stretching surface,” Chinese Physics Letters, vol. 27, no. 12, Article ID 124401, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Fang, S. Yao, J. Zhang, and A. Aziz, “Viscous flow over a shrinking sheet with a second order slip flow model,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 7, pp. 1831–1842, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Fang, J. Zhang, and S. Yao, “Slip magnetohydrodynamic viscous flow over a permeable shrinking sheet,” Chinese Physics Letters, vol. 27, no. 12, Article ID 124702, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Bhattacharyya, S. Mukhopadhyay, and G. C. Layek, “Slip effects on boundary layer stagnation-point flow and heat transfer towards a shrinking sheet,” International Journal of Heat and Mass Transfer, vol. 54, no. 1–3, pp. 308–313, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Bhattacharyya, S. Mukhopadhyay, and G. C. Layek, “MHD boundary layer slip flow and heat transfer over a flat plate,” Chinese Physics Letters, vol. 28, no. 2, Article ID 024701, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. P. D. Ariel, T. Hayat, and S. Asghar, “The flow of an elastico-viscous fluid past a stretching sheet with partial slip,” Acta Mechanica, vol. 187, no. 1–4, pp. 29–35, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. P. D. Ariel, “Two dimensional stagnation point flow of an elastico-viscous fluid with partial slip,” Zeitschrift für Angewandte Mathematik und Physik, vol. 88, no. 4, pp. 320–324, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Fang, J. Zhang, and S. Yao, “Slip MHD viscous flow over a stretching sheet—an exact solution,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 11, pp. 3731–3737, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. S. J. Liao, On the proposed homotopy analysis techniques for nonlinear problems and its applications [Ph.D. thesis], Shanghai Jiao Tong University, Shanghai, China, 1992.
  35. S. J. Liao, Homotopy Analysis Method in Nonlinear Differential Equations, Higher Education Press, Beijing, China; Springer, Berlin, Germany, 2012.
  36. S. Liao, “An analytic solution of unsteady boundary-layer flows caused by an impulsively stretching plate,” Communications in Nonlinear Science and Numerical Simulation, vol. 11, no. 3, pp. 326–339, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Hayat, Z. Abbas, and M. Sajid, “Series solution for the upper-convected Maxwell fluid over a porous stretching plate,” Physics Letters A, vol. 358, no. 5-6, pp. 396–403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Liao, “Notes on the homotopy analysis method: some definitions and theorems,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 4, pp. 983–997, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. R. A. Van Gorder and K. Vajravelu, “On the selection of auxiliary functions, operators, and convergence control parameters in the application of the Homotopy Analysis Method to nonlinear differential equations: a general approach,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 12, pp. 4078–4089, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. T. R. Mahapatra, S. K. Nandy, and A. S. Gupta, “Analytical solution of magnetohydrodynamic stagnation-point flow of a power-law fluid towards a stretching surface,” Applied Mathematics and Computation, vol. 215, no. 5, pp. 1696–1710, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Abbasbandy, “Homotopy analysis method for the Kawahara equation,” Nonlinear Analysis: Real World Applications, vol. 11, no. 1, pp. 307–312, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Nakamura and T. Sawada, “Numerical study on the flow of a non-Newtonian fluid through an axisymmetric stenosis,” Journal of Biomechanical Engineering, vol. 110, no. 2, pp. 137–143, 1988. View at Google Scholar · View at Scopus
  43. J. A. Shercliff, A Textbook of Magnetohydrodynamics, Pergamon Press, Oxford, UK, 1965.