Table of Contents
ISRN Veterinary Science
Volume 2013, Article ID 148030, 3 pages
http://dx.doi.org/10.1155/2013/148030
Research Article

A Proposed Selection Index for Jersey Cattle in Zimbabwe

1Malawi College of Forestry and Wildlife, Private Bag 6, Dedza, Malawi
2Department of Animal Science, Faculty of Agriculture, University of Zimbabwe, P.O. Box MP 167, Mount Pleasant, Harare, Zimbabwe

Received 5 February 2013; Accepted 28 February 2013

Academic Editors: P. Butaye and J. F. Hocquette

Copyright © 2013 Edward Missanjo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. König and H. H. Swalve, “Application of selection index calculations to determine selection strategies in genomic breeding programs,” Journal of Dairy Science, vol. 92, no. 10, pp. 5292–5303, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. F. Kluyts, F. W. C. Neser, and M. J. Bradfield, “Proposed economic selection indices for the Simmentaler breed in South Africa,” South African Journal of Animal Sciences, vol. 37, no. 2, pp. 122–131, 2007. View at Google Scholar · View at Scopus
  3. R. R. van der Westhuizen and J. van der Westhuizen, “A proposed selection index for feedlot profitability based on estimated breeding values,” Genetics and Molecular Research, vol. 8, no. 2, pp. 448–455, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. J. C. M. Dekkers, “Prediction of response to marker-assisted and genomic selection using selection index theory,” Journal of Animal Breeding and Genetics, vol. 124, no. 6, pp. 331–341, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. L. P. Sørensen, T. Mark, M. K. Sørensen, and S. Ostergaard, “Economic values and expected effect of selection index for pathogen-specific mastitis under Danish conditions,” Journal of Dairy Science, vol. 93, no. 1, pp. 358–369, 2010. View at Google Scholar
  6. C. Sun, P. Madsen, M. S. Lund, Y. Zhang, U. S. Nielsen, and G. Su, “Improvement in genetic evaluation of female fertility in dairy cattle using multiple-trait models including milk production traits,” Journal of Animal Science, vol. 88, no. 3, pp. 871–878, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. B. J. Hayes, P. J. Bowman, A. J. Chamberlain, and M. E. Goddard, “Invited review: genomic selection in dairy cattle: progress and challenges,” Journal of Dairy Science, vol. 92, no. 2, pp. 433–443, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Kunaka and S. M. Makuza, “Genetic and environmental trends for milk traits for Zimbabwean Holstein-Friesian population,” Pakistan Journal of Biological Sciences, vol. 8, no. 7, pp. 1011–1015, 2005. View at Google Scholar
  9. USDA, Agro-Climatic Zones in Zimbabwe, United States Department of Agriculture, Washington, DC, USA, 2009.
  10. E. M. Missanjo, Genetic and phenotypic evaluation of Zimbabwean Jersey cattle towards the development of a selection index [M.S. thesis], University of Zimbabwe, Harare, Zimbabwe, 2010.
  11. A. R. Gilmour, B. R. Cullis, S. J. Welham, and R. Thompson, ASReml Reference Manual, NSW Agriculture Biometrical Bulletin 3, New South Wales, Australia, 2002.
  12. M. J. M. Rutten, P. Bijma, J. A. Woolliams, and J. A. M. van Arendonk, “SelAction: software to predict selection response and rate of inbreeding in livestock breeding programs,” Journal of Heredity, vol. 93, no. 6, pp. 456–458, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. D. S. Falconer and T. F. C. Mackay, Introduction to Quantitative Genetics, Longman Scientific and Technical, Essex, England, 4th edition, 1996.
  14. M. P. L. Calus, T. H. E. Meuwissen, A. P. W. de Roos, and R. F. Veerkamp, “Accuracy of genomic selection using different methods to define haplotypes,” Genetics, vol. 178, no. 1, pp. 553–561, 2008. View at Publisher · View at Google Scholar · View at Scopus