Table of Contents
ISRN Organic Chemistry
Volume 2013 (2013), Article ID 159164, 10 pages
http://dx.doi.org/10.1155/2013/159164
Research Article

Synthesis and In Vitro Evaluation of Novel Acyclic and Cyclic Nucleoside Analogs with a Thiadiazole Ring

1Division of Science and Mathematics, Eureka College, 300 E. College Avenue, Eureka, IL 61530, USA
2Division of Biomedical Marine Research, Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, USA
3Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, P.O. Box 3091, Boca Raton, FL 33431-0991, USA

Received 9 July 2012; Accepted 10 October 2012

Academic Editors: B. Das, T. Kurtan, R. Pohl, and J. Tamariz

Copyright © 2013 Yuxiang Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Jato and J. J. Windheuser, “5-fluorouracil and derivatives in cancer chemotherapy. 3. In vivo enhancement of antitumor activity of 5-fluorouracil (FU) and 5-fluoro-2'-deoxyuridine (FUDR),” Journal of Pharmaceutical Sciences, vol. 62, no. 12, pp. 1975–1978, 1973. View at Google Scholar
  2. B. A. Kamen, J. Casper, S. Lauer, B. M. Camitta, and J. S. Holcenberg, “Treatment of refractory acute lymphoblastic leukemia with teniposide and cytarabine,” Cancer Treatment Reports, vol. 70, no. 7, pp. 935–936, 1986. View at Google Scholar · View at Scopus
  3. M. Hidalgo, D. Castellano, L. Paz-Ares et al., “Phase I-II study of gemcitabine and fluorouracil as a continuous infusion in patients with pancreatic cancer,” Journal of Clinical Oncology, vol. 17, no. 2, pp. 585–592, 1999. View at Google Scholar · View at Scopus
  4. L. H. Einhorn, M. J. Stender, and S. D. Williams, “Phase II trial of gemcitabine in refractory germ cell tumors,” Journal of Clinical Oncology, vol. 17, no. 2, pp. 509–511, 1999. View at Google Scholar · View at Scopus
  5. H. von der Maase, S. W. Hansen, J. T. Roberts et al., “Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: Results of a large, randomized, multinational, multicenter, phase III study,” Journal of Clinical Oncology, vol. 18, no. 17, pp. 3068–3077, 2000. View at Google Scholar · View at Scopus
  6. G. Frasci, V. Lorusso, N. Panza et al., “Gemcitabine plus vinorelbine versus vinorelbine alone in elderly patients with advanced non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 18, no. 13, pp. 2529–2536, 2000. View at Google Scholar · View at Scopus
  7. H. Y. Jiang, R. J. Hickey, W. Abdel-Aziz, and L. H. Malkas, “Effects of gemcitabine and araC on in vitro DNA synthesis mediated by the human breast cell DNA synthesome,” Cancer Chemotherapy and Pharmacology, vol. 45, no. 4, pp. 320–328, 2000. View at Google Scholar · View at Scopus
  8. B. Lund, P. E. G. Kristjansen, and H. H. Hansen, “Clinical and preclinical activity of 2',2'- difluorodeoxycytidine (gemcitabine),” Cancer Treatment Reviews, vol. 19, no. 1, pp. 45–55, 1993. View at Google Scholar · View at Scopus
  9. G. I. Birnbaum, J. Giziewicz, E. J. Gabe, T. S. Lin, and W. H. Prusoff, “Structure and conformation of 3'-azido-3'-deoxythymidine (AZT), an inhibitor of the HIV (AIDS) virus,” Canadian Journal of Chemistry, vol. 65, no. 9, pp. 2135–2139, 1987. View at Google Scholar · View at Scopus
  10. G. Antonelli, O. Turriziani, A. Verri et al., “Long-term exposure to zidovudine affects in vitro and in vivo the efficiency of phosphorylation of thymidine kinase,” AIDS Research and Human Retroviruses, vol. 12, no. 3, pp. 223–228, 1996. View at Google Scholar · View at Scopus
  11. J. D. Lundgren, A. N. Phillips, C. Pedersen et al., “Comparison of long-term prognosis of patients with AIDS treated and not treated with zidovudine,” Journal of the American Medical Association, vol. 271, no. 14, pp. 1088–1092, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. R. E. McKinney Jr. and C. Wilfert, “Growth as a prognostic indicator in children with human immunodeficiency virus infection treated with zidovudine,” The Journal of Pediatrics, vol. 125, no. 5, part 1, pp. 728–733, 1994. View at Publisher · View at Google Scholar
  13. G. Moyle, “Drug evaluation anti-infectives: activity and role of lamivudine in the treatment of adults with human immunodeficiency virus type 1 infection: a review,” Expert Opinion on Investigational Drugs, vol. 5, no. 8, pp. 913–924, 1996. View at Publisher · View at Google Scholar
  14. N. Leung, “Lamivudine for chronic hepatitis B,” Expert Review of Anti-Infective Therapy, vol. 2, no. 2, pp. 173–180, 2004. View at Google Scholar · View at Scopus
  15. W. H. Prusoff, “Synthesis and biological activities of iododeoxyuridine, an analog of thymidine,” Biochimica et Biophysica Acta, vol. 32, pp. 295–296, 1959. View at Publisher · View at Google Scholar
  16. W. H. Prusoff and B. Goz, “Potential mechanisms of action of antiviral agents,” Federation Proceedings, vol. 32, no. 6, pp. 1679–1687, 1973. View at Google Scholar · View at Scopus
  17. M. Dracinsky, M. Krecmerova, and A. Holy, “Study of chemical stability of antivirally active 5-azacytosine acyclic nucleoside phosphonates using NMR spectroscopy,” Bioorganic & Medicinal Chemistry, vol. 16, no. 14, pp. 6778–6782, 2008. View at Publisher · View at Google Scholar
  18. E. de Clercq and A. Holý, “Case history: acyclic nucleoside phosphonates: a key class of antiviral drugs,” Nature Reviews Drug Discovery, vol. 4, no. 11, pp. 928–940, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. E. de Clercq, “Discovery and development of BVDU (brivudin) as a therapeutic for the treatment of herpes zoster,” Biochemical Pharmacology, vol. 68, no. 12, pp. 2301–2315, 2004. View at Publisher · View at Google Scholar
  20. E. de Clerq, “Tenofovir: quo vadis anno 2012 (where is it going in the year 2012),” Medicinal Research Reviews, vol. 32, pp. 765–785, 2012. View at Publisher · View at Google Scholar
  21. E. de Clercq, “Pre-exposure chemoprophylaxis of HIV infection: quo vadis?” Biochemical Pharmacology, vol. 2012, no. 5, pp. 567–573, 2012. View at Publisher · View at Google Scholar
  22. W. Hryniuk, J. Foerster, M. Shojania, and A. Chow, “Cytarabine for herpesvirus infections.,” Journal of the American Medical Association, vol. 219, no. 6, pp. 715–718, 1972. View at Publisher · View at Google Scholar · View at Scopus
  23. H. E. Kaufman, E. D. Ellison, and W. M. Townsend, “The chemotherapy of herpes iritis with adenine arabinoside and cytarabine,” Archives of Ophthalmology, vol. 84, no. 6, pp. 783–787, 1970. View at Google Scholar · View at Scopus
  24. R. Zahradník, “Electronic structure of heterocyclic sulfur compounds,” Advances in Heterocyclic Chemistry, vol. 5, pp. 1–67, 1965. View at Publisher · View at Google Scholar
  25. C. Párkányi, “Recent progress in the quantum chemistry of organic sulfur compounds,” The Mechanism of Reactions of Sulfur Compounds, vol. 4, pp. 69–93, 1970. View at Google Scholar
  26. F. Kurzer, “870. Thiadiazoles. Part IV. The oxidation of N-(aroylamidino)thioureas,” Journal of the Chemical Society, pp. 4524–4531, 1956. View at Publisher · View at Google Scholar
  27. F. Kurzer and S. A. Taylor, “70. Thiadiazoles. Part VI. 5-amino-3-hydroxy-1 : 2 : 4-thiadiazole derivatives,” Journal of the Chemical Society, pp. 379–386, 1958. View at Publisher · View at Google Scholar
  28. E. Lukevics, M. Trusule, V. Udre, and E. Liepins, “Addition of 5-fluorouracil to 2,3-dihydrofuran,” Izvestiia Akademii Nauk Latviiskoi SSR, vol. 3, pp. 317–320, 1982. View at Google Scholar
  29. T. Freund and A. Schander, “Zur Kenntniss des Thiourazols,” Berichte der Deutschen Chemischen Gesellschaft, vol. 29, no. 3, pp. 2506–2511, 1896. View at Publisher · View at Google Scholar
  30. K. Rüfenacht, “Zur Chemie von GS 13005, einem neuen Insektiziden Phosphorsäureester,” Helvetica Chimica Acta, vol. 51, no. 3, pp. 518–526, 1968. View at Publisher · View at Google Scholar
  31. R. Clarkson and J. K. Landquist, “2-alkoxy-5-amino- and -5-arenesulphonamido-1,3,4-thiadiazoles and related compounds,” Journal of the Chemical Society C: Organic, vol. 24, pp. 2700–2704, 1967. View at Publisher · View at Google Scholar
  32. G. E. Keyser, J. D. Bryant, and J. R. Barrio, “Iodomethylethers from 1,3-dioxolane and 1,3-oxathiolane: preparation of acyclic nucleoside analogs,” Tetrahedron Letters, vol. 20, no. 35, pp. 3263–3264, 1979. View at Google Scholar · View at Scopus
  33. M. Ubasawa, H. Takashima, and K. Sekiya, “A convenient one-pot synthesis of acyclonucleosides,” Chemical and Pharmaceutical Bulletin, vol. 43, no. 1, pp. 142–143, 1995. View at Google Scholar · View at Scopus
  34. E. P. Lira and C. W. Huffman, “Some Michael-type reactions with adenine,” Journal of Organic Chemistry, vol. 31, no. 7, pp. 2188–2191, 1966. View at Google Scholar · View at Scopus
  35. L. A. Yanovskaya, G. V. Kryshtal, and V. V. Kul’ganek, “Nucleophilic addition of CH acids to αβ-unsaturated aldehydes and ketones,” Uspekhi Khimii, vol. 53, p. 1280, 1984, Russian Chemical Reviews, vol. 53, p. 744, 1984. View at Google Scholar
  36. G. R. Geen, P. M. Kincey, and B. M. Choudary, “Regiospecific Michael additions with 2-aminopurines,” Tetrahedron Letters, vol. 33, no. 32, pp. 4609–4612, 1992. View at Publisher · View at Google Scholar
  37. S. Guillarme, S. Legoupy, N. Bourgougnon, A. M. Aubertin, and F. Huet, “Synthesis of new acyclonucleosides comprising unexpected regioisomers in the case of purines,” Tetrahedron, vol. 59, no. 48, pp. 9635–9639, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Párkányi, H. L. Yuan, N. S. Cho, J. J. Jaw, T. E. Woodhouse, and T. L. Aung, “Synthesis of 2-(2',3'-dihydroxypropyl)-5-amino-2H-1,2,4-thiadiazol-3-one and 3-(2',3'-dihydroxypropyl)-5-amino-3H-1,3,4-thiadiazol-2-one,” Journal of Heterocyclic Chemistry, vol. 26, no. 5, pp. 1331–1334, 1989. View at Publisher · View at Google Scholar
  39. J. P. Mahieu, M. Gosselet, B. Sebille, and Y. Beuzard, “Synthesis of new thiosulfonates and disulfides from sulfonyl chlorides and thiols,” Synthetic Communications, vol. 16, no. 13, pp. 1709–1722, 1986. View at Publisher · View at Google Scholar
  40. K. Ramadas and N. Srinivasan, “Sodium chlorite–yet another oxidant for thiols to disulphides,” Synthetic Communications, vol. 25, no. 2, pp. 227–234, 1995. View at Publisher · View at Google Scholar
  41. K. Ramadas, N. Srinivasan, N. Janarthanan, and R. Pritha, “A comparative study of oxidants on thiols,” Organic Preparations and Procedures International, vol. 28, no. 3, pp. 352–354, 1996. View at Google Scholar · View at Scopus
  42. A. Castro, A. Encinas, C. Gil et al., “Non-ATP competitive glycogen synthase kinase 3β (GSK-3β) inhibitors: study of structural requirements for thiadiazolidinone derivatives,” Bioorganic & Medicinal Chemistry, vol. 16, no. 1, pp. 495–510, 2008. View at Publisher · View at Google Scholar
  43. N. S. Cho, G. N. Kim, and C. Párkányi, “Synthesis of 5-aroylamino-3H-1,3,4-thiadiazole-2-thiones and their tautomerism,” Journal of Heterocyclic Chemistry, vol. 30, no. 2, pp. 397–401, 1993. View at Publisher · View at Google Scholar