Table of Contents
ISRN Physical Chemistry
Volume 2013, Article ID 171865, 8 pages
Research Article

Biosorption of Pb(II) from Aqueous Solution Using Cow Hooves: Kinetics and Thermodynamics

1Department of Chemical Sciences, Afe Babalola University, PMB 5454, Ado Ekiti 360101, Nigeria
2Department of Chemistry, Federal University of Technology, PMB 704, Akure 340252, Nigeria

Received 23 April 2013; Accepted 23 May 2013

Academic Editors: T. Panczyk, X. Rozanska, and R. Spezia

Copyright © 2013 I. Osasona et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Biosorption of Pb(II) ions from aqueous solution by cow hooves (CHs) was investigated as a function of initial pH, contact time, and biosorbent dosage through batch studies. Equilibrium experiments were performed at three different temperatures (298, 308, and 318 K) using initial Pb2+ concentration ranging from 15 to 100 mgg−1. This study revealed that maximum uptake (96.2% removal) of Pb2+ took place within 30 minutes of agitation, and the process was brought to equilibrium within 60 minutes of equilibration. The equilibrium data were modelled using Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models. The Langmuir isotherm model fitted the data best at all temperatures considered. The Lagergren second-order kinetic model fitted the biosorption process better than the first-order model. The negative values obtained for both Gibb’s free energy change and enthalpy change are an indication of the spontaneous and exothermic nature of the sorption of Pb2+ onto CH. A study of the FTIR spectral obtained before and after Pb2+ sorption showed that carbonyl, hydroxyl, amino, and carboxyl groups were involved in the sorption process.