Table of Contents
ISRN Orthopedics
Volume 2013, Article ID 183702, 10 pages
http://dx.doi.org/10.1155/2013/183702
Research Article

Pedicle-Screw-Based Dynamic Systems and Degenerative Lumbar Diseases: Biomechanical and Clinical Experiences of Dynamic Fusion with Isobar TTL

1Department of Spine Surgery, University Neurological Hospital P Wertheimer and Hospices Civils de Lyon, University Claude Bernard Lyon 1, 69003 Lyon, France
2Department of Clinical Research, Alphatecspine, 62217 Beaurains, France

Received 30 October 2012; Accepted 28 November 2012

Academic Editors: A. Combalía and H. Yuan

Copyright © 2013 Cédric Barrey et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Y. Barrey, “Dynamic instrumentation for fusion with Isobar TTL: biomechanical and clinical aspects,” ArgoSpine News and Journal, vol. 22, no. 2, pp. 62–66, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Y. Barrey, R. K. Ponnappan, J. Song, and A. R. Vaccaro, “Biomechanical evaluation of pedicle screw-based dynamic stabilization devices for the lumbar spine: a systematic review,” SAS Journal, vol. 2, no. 4, pp. 159–170, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. R. C. Duffield, W. L. Carson, L. Y. Chen, and B. Voth, “Longitudinal element size effect on load sharing, internal loads, and fatigue life of tri-level spinal implant constructs,” Spine, vol. 18, no. 12, pp. 1695–1703, 1993. View at Google Scholar · View at Scopus
  4. V. K. Goel, R. J. Konz, H. T. Chang, N. M. Grosland, L. J. Grobler, and K. D. Chesmel, “Hinged-dynamic posterior device permits greater loads on the graft and similar stability as compared with its equivalent rigid device: a three-dimensional finite element assessment,” Journal of Prosthetics and Orthotics, vol. 13, no. 1, pp. 17–20, 2001. View at Google Scholar · View at Scopus
  5. V. K. Goel and L. G. Gilbertson, “Basic science of spinal instrumentation,” Clinical Orthopaedics and Related Research, no. 335, pp. 10–31, 1997. View at Google Scholar · View at Scopus
  6. A. Templier, L. Denninger, C. Mazel, F. Lavaste, and W. Skalli, “Comparison between two different concepts of lumbar posterior osteosynthesis implants: a finite-element analysis,” European Journal of Orthopaedic Surgery and Traumatology, vol. 8, no. 1, pp. 27–36, 1998. View at Google Scholar · View at Scopus
  7. H. M. Frost, “A 2003 update of bone physiology and Wolff s law for clinicians,” Angle Orthodontist, vol. 74, no. 1, pp. 3–15, 2004. View at Google Scholar · View at Scopus
  8. T. H. Lim, V. K. Goel, J. M. Winterbottom et al., “A comparison of stress-induced porosity due to conventional and a modified spinal fixation device,” Journal of Spinal Disorders, vol. 7, no. 1, pp. 1–11, 1994. View at Google Scholar · View at Scopus
  9. R. C. Huang, F. P. Girardi, M. R. Lim, and F. P. Cammisa, “Advantages and disadvantages of nonfusion technology in spine surgery,” Orthopedic Clinics of North America, vol. 36, no. 3, pp. 263–269, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Khoueir, K. A. Kim, and M. Y. Wang, “Classification of posterior dynamic stabilization devices,” Neurosurgical Focus, vol. 22, no. 1, article E3, 2007. View at Google Scholar · View at Scopus
  11. K. Meyers, M. Tauber, Y. Sudin et al., “Use of instrumented pedicle screws to evaluate load sharing in posterior dynamic stabilization systems,” The Spine Journal, vol. 8, no. 6, pp. 926–932, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. R. C. Mulholland and D. K. Sengupta, “Rationale, principles and experimental evaluation of the concept of soft stabilization,” European Spine Journal, vol. 11, supplement 2, pp. S198–S205, 2002. View at Google Scholar · View at Scopus
  13. D. K. Sengupta, “Dynamic stabilization devices in the treatment of low back pain,” Orthopedic Clinics of North America, vol. 35, no. 1, pp. 43–56, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. D. K. Sengupta, “Dynamic stabilization devices in the treatment of low back pain,” Neurology India, vol. 53, no. 4, pp. 466–474, 2005. View at Google Scholar · View at Scopus
  15. T. Wright, M. Tauber, K. Meyers et al., “P71. The biomechanics of posterior motion preservation systems,” The Spine Journal, vol. 5, no. 4, supplement, pp. 143S–144S, 2005. View at Google Scholar
  16. R. Huang, T. M. Wright, M. M. Panjabi, and J. D. Lipman, “Biomechanics of non fusion implants,” Orthopedic Clinics of North America, vol. 36, no. 3, pp. 271–280, 2005. View at Publisher · View at Google Scholar
  17. D. McNally, “Rationale for dynamic stabilization,” in Dynamic Reconstruction of the Spine, D. H. Kim, F. P. Cammisa Jr., and R. G. Fessler, Eds., pp. 237–243, Thieme, New York, NY, USA, 2006. View at Google Scholar
  18. P. Wendsche, “‘Dynamic fusion’ in lumbar spine degenerative disorders mid-term results,” ArgoSpine News and Journal, vol. 22, no. 2, pp. 67–70, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Castellvi, J. Paraiso, and D. Pienkowski, “The isobar TTL dynamic instrumentation,” in Dynamic Reconstruction of the Spine, D. H. Kim, F. P. Cammisa Jr., and R. G. Fessler, Eds., pp. 86–91, Thieme, New York, NY, USA, 2006. View at Google Scholar
  20. A. Castellvi, W. Hudson, and D. Clabeaux, “Evaluation of hybrid posterior dynamic stabilization: a two-year follow-up,” in Proceedings of the 9th Annual Meeting of Spine Arthroplasty Society', London, UK, 2009.
  21. G. Perrin and A. Cristini, “Long term effect of the intervertebral dynamic stabilization as a protective technique for adjacent levels,” in Proceedings of the Annual Conference of Association of Spine Surgeons of India Congress (ASSICON), Chenai, India, 2009.
  22. A. Castellvi and D. Clabeaux, “Radiographic and functional outcomes of dynamic stabilization of the lumbar spine: two years follow-up,” in Proceedings of the 4th Interdiciplinary Congress on Spine Care-World Spine Annual, Istanbul, Turkey, 2007.
  23. G. Perrin, “Circumferential arthrodesis for the treatment of lumbar spondylolisthesis by using cages for PLIF and semi-rigid interpedicular posterior fixation for prevention of adjacent degeneration,” in Proceedings of the EANS Winter Meeting, Luxembourg, 2006.
  24. S. Champain, C. Mazel, A. Mitulescu, and W. Skalli, “Quantitative analysis in outcome assessment of instrumented lumbosacral arthrodesis,” European Spine Journal, vol. 16, no. 8, pp. 1241–1249, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. S. Kim, H. Y. Zhang, B. J. Moon et al., “Nitinol spring rod dynamic stabilization system and Nitinol memory loops in surgical treatment for lumbar disc disorders: short-term follow up,” Neurosurgical Focus, vol. 22, no. 1,article E10, 2007. View at Google Scholar · View at Scopus
  26. C. E. Mandigo, P. Sampath, and M. G. Kaiser, “Posterior dynamic stabilization of the lumbar spine: pedicle based stabilization with the AccuFlex rod system,” Neurosurgical Focus, vol. 22, no. 1, article E9, 2007. View at Google Scholar · View at Scopus
  27. M. Bothmann, E. Kast, G. J. Boldt, and J. Oberle, “Dynesys fixation for lumbar spine degeneration,” Neurosurgical Review, vol. 31, no. 2, pp. 189–196, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Agazzi, A. Reverdin, and D. May, “Posterior lumbar interbody fusion with cages: an independent review of 71 cases,” Journal of Neurosurgery, vol. 91, no. 2, supplement, pp. 186–192, 1999. View at Google Scholar · View at Scopus
  29. P. M. Arnold, S. Robbins, W. Paullus, S. Faust, R. Holt, and R. McGuire, “Clinical outcomes of lumbar degenerative disc disease treated with posterior lumbar interbody fusion allograft spacer: a prospective, multicenter trial with 2-year follow-up,” American Journal of Orthopedics, vol. 38, no. 7, pp. E115–E122, 2009. View at Google Scholar · View at Scopus
  30. T. Asazuma, M. Yamugishi, M. Sato, S. Ichimura, K. Fujikawa, and H. V. Crock, “Posterior spinal fusion for lumbar degenerative diseases using the Crock-Yamagishi (C-Y) spinal fixation system,” Journal of Spinal Disorders and Techniques, vol. 17, no. 3, pp. 174–177, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. D. A. Bednar, “Surgical management of lumbar degenerative spinal stenosis with spondylolisthesis via posterior reduction with minimal laminectomy,” Journal of Spinal Disorders, vol. 15, no. 2, pp. 105–109, 2002. View at Google Scholar · View at Scopus
  32. I. T. Benli, H. Çiçek, and A. Kaya, “Comparison of sagittal plane realignment and reduction with posterior instrumentation in developmental low or high dysplastic spondylolisthesis,” Kobe Journal of Medical Sciences, vol. 52, no. 6, pp. 151–169, 2006. View at Google Scholar · View at Scopus
  33. A. G. Brotis, K. N. Paterakis, P. M. Tsiamalou, K. N. Fountas, G. M. Hahjigeorgiou, and A. Karavelis, “Instrumented posterior lumbar fusion outcomes for lumbar degenerative disorders in a Southern European, semirural population,” Journal of Spinal Disorders and Techniques, vol. 23, no. 7, pp. 444–450, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Cheh, K. H. Bridwell, L. G. Lenke et al., “Adjacent segment disease followinglumbar/thoracolumbar fusion with pedicle screw instrumentation: a minimum 5-year follow-up,” Spine, vol. 32, no. 20, pp. 2253–2257, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. F. B. Christensen, E. S. Hansen, S. P. Eiskjaer et al., “Circumferential lumbar spinal fusion with brantigan cage versus posterolateral fusion with titanium cotrel-dubousset instrumentation: a prospective, randomized clinical study of 146 patients,” Spine, vol. 27, no. 23, pp. 2674–2683, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Dai, Z. Zhang, Y. Li, Z. Yang, Y. Zhang, and Q. Wang, “Treatment of lumbar spondylolisthesis with spondylolisthesis reduction system internal fixation and decompression, posterior alone interbody cage fusion and bone grafting,” Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, vol. 22, no. 12, pp. 1445–1447, 2008. View at Google Scholar · View at Scopus
  37. F. L. R. Dantas, M. N. Prandini, and M. A. T. Ferreira, “Comparison between posterior lumbar fusion with pedicle screws and posterior lumbar interbody fusion with pedicle screws in adult spondylolisthesis,” Arquivos de Neuro-Psiquiatria, vol. 65, no. 3 B, pp. 764–770, 2007. View at Google Scholar · View at Scopus
  38. E. Dehoux, E. Fourati, K. Madi, B. Reddy, and P. Segal, “Posterolateral versus interbody fusion in isthmic spondylolisthesis: functional results in 52 cases with a minimum follow-up of 6 years,” Acta Orthopaedica Belgica, vol. 70, no. 6, pp. 578–582, 2004. View at Google Scholar · View at Scopus
  39. J. S. Fischgrund, M. Mackay, H. N. Herkowitz, R. Brower, D. M. Montgomery, and L. T. Kurz, “1997 Volvo award winner in clinical studies: degenerative lumbar spondylolisthesis with spinal stenosis: a prospective, randomized study comparing decompressive laminectomy and arthrodesis with and without spinal instrumentation,” Spine, vol. 22, no. 24, pp. 2807–2812, 1997. View at Publisher · View at Google Scholar · View at Scopus
  40. J. C. France, M. J. Yaszemski, W. C. Lauerman et al., “A randomized prospective study of posterolateral lumbar fusion outcomes with and without pedicle screw instrumentation,” Spine, vol. 24, no. 6, pp. 553–560, 1999. View at Google Scholar · View at Scopus
  41. B. J. C. Freeman, P. Licina, and S. H. Mehdian, “Posterior lumbar interbody fusion combined with instrumented postero-lateral fusion: 5-year results in 60 patients,” European Spine Journal, vol. 9, no. 1, pp. 42–46, 2000. View at Google Scholar · View at Scopus
  42. P. Fritzell, O. Hägg, P. Wessberg, and A. Nordwall, “Chronic low back pain and fusion: a comparison of three surgical techniques: a prospective multicenter randomized study from the Swedish lumbar spine study group,” Spine, vol. 27, no. 11, pp. 1131–1141, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. S. D. Gertzbein, R. Betz, D. Clements et al., “Semirigid instrumentation in the management of lumbar spinal conditions combined with circumferential fusion: a multicenter study,” Spine, vol. 21, no. 16, pp. 1918–1926, 1996. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Gillet, “The fate of the adjacent motion segments after lumbar fusion,” Journal of Spinal Disorders and Techniques, vol. 16, no. 4, pp. 338–345, 2003. View at Google Scholar · View at Scopus
  45. K. Gong, Z. Wang, and Z. Lou, “Reduction and transforaminal lumbar interbody fusion with posterior fixation versus transsacral cage fusion in situ with posterior fixation in the treatment of grade 2 adult isthmic spondylolisthesis in the lumbosacral spine,” Journal of Neurosurgery: Spine, vol. 13, no. 3, pp. 394–400, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. N. Goyal, D. W. Wimberley, A. Hyatt et al., “Radiographic and clinical outcomes after instrumented reduction and transforaminal lumbar interbody fusion of mid and high-grade isthmic spondylolisthesis,” Journal of Spinal Disorders and Techniques, vol. 22, no. 5, pp. 321–327, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Y. Ha, K. H. Na, J. H. Shin, and K. W. Kim, “Comparison of posterolateral fusion with and without additional posterior lumbar interbody fusion for degenerative lumbar spondylolisthesis,” Journal of Spinal Disorders and Techniques, vol. 21, no. 4, pp. 229–234, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. M. K. Hsieh, L. H. Chen, C. C. Niu, T. S. Fu, P. L. Lai, and W. J. Chen, “Postoperative anterior spondylodiscitis after posterior pedicle screw instrumentation,” The Spine Journal, vol. 11, no. 1, pp. 24–29, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. W. C. H. Jacobs, A. Vreeling, and M. de Kleuver, “Fusion for low-grade adult isthmic spondylolisthesis: a systematic review of the literature,” European Spine Journal, vol. 15, no. 4, pp. 391–402, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. M. B. Kornblum, J. S. Fischgrund, H. N. Herkowitz, D. A. Abraham, D. L. Berkower, and J. S. Ditkoff, “Degenerative lumbar spondylolisthesis with spinal stenosis: a prospective long-term study comparing fusion and pseudarthrosis,” Spine, vol. 29, no. 7, pp. 726–733, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Korovessis, T. Repantis, G. Petsinis, P. Iliopoulos, and A. Hadjipavlou, “Direct reduction of thoracolumbar burst fractures by means of balloon kyphoplasty with calcium phosphate and stabilization with pedicle-screw instrumentation and fusion,” Spine, vol. 33, no. 4, pp. E100–E108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Masferrer, C. H. Gomez, D. G. Karahalios, and V. K. H. Sonntag, “Efficacy of pedicle screw fixation in the treatment of spinal instability and failed back surgery: a 5-year review,” Journal of Neurosurgery, vol. 89, no. 3, pp. 371–377, 1998. View at Google Scholar · View at Scopus
  53. K. Matsudaira, T. Yamazaki, A. Seichi et al., “Spinal stenosis in grade I degenerative lumbar spondylolisthesis: a comparative study of outcomes following laminoplasty and laminectomy with instrumented spinal fusion,” Journal of Orthopaedic Science, vol. 10, no. 3, pp. 270–276, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. K. R. Moore, M. R. Pinto, and L. M. Butler, “Degenerative disc disease treated with combined anterior and posterior arthrodesis and posterior instrumentation,” Spine, vol. 27, no. 15, pp. 1680–1686, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. D. B. Moreland, H. L. Asch, G. A. Czajka, J. A. Overkamp, and D. M. Sitzman, “Posterior lumbar interbody fusion: comparison of single intervertebral cage and single side pedicle screw fixation versus bilateral cages and screw fixation,” Minimally Invasive Neurosurgery, vol. 52, no. 3, pp. 132–136, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. A. M. Müslüman, A. Yilmaz, T. Cansever et al., “Posterior lumbar interbody fusion versus posterolateral fusion with instrumentation in the treatment of low-grade isthmic spondylolisthesis: midterm clinical outcomes,” Journal of Neurosurgery: Spine, vol. 14, no. 4, pp. 488–496, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. T. H. Nguyen, D. C. Randolph, J. Talmage, P. Succop, and R. Travis, “Long-term outcomes of lumbar fusion among workers' compensation subjects: a historical cohort study,” Spine, vol. 36, no. 4, pp. 320–331, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. S. E. Nork, S. S. Hu, K. L. Workman, P. A. Glazer, and D. S. Bradford, “Patient outcomes after decompression and instrumented posterior spinal fusion for degenerative spondylolisthesis,” Spine, vol. 24, no. 6, pp. 561–569, 1999. View at Publisher · View at Google Scholar · View at Scopus
  59. D. K. Resnick, T. F. Choudhri, A. T. Dailey et al., “Guidelines for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 11: interbody techniques for lumbar fusion,” Journal of Neurosurgery: Spine, vol. 2, no. 6, pp. 692–699, 2005. View at Google Scholar · View at Scopus
  60. D. J. Rivet, D. Jeck, J. Brennan, A. Epstein, and C. Lauryssen, “Clinical outcomes and complications associated with pedicle screw fixation-augmented lumbar interbody fusion,” Journal of Neurosurgery: Spine, vol. 1, no. 3, pp. 261–266, 2004. View at Google Scholar · View at Scopus
  61. J. D. Rompe, P. Eysel, and C. Hopf, “Clinical efficacy of pedicle instrumentation and posterolateral fusion in the symptomatic degenerative lumbar spine,” European Spine Journal, vol. 4, no. 4, pp. 231–237, 1995. View at Publisher · View at Google Scholar · View at Scopus
  62. M. A. Rousseau, J. Y. Lazennec, E. C. Bass, and G. Saillant, “Predictors of outcomes after posterior decompression and fusion in degenerative spondylolisthesis,” European Spine Journal, vol. 14, no. 1, pp. 55–60, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. M. A. Rousseau, J. Y. Lazennec, and G. Saillant, “Circumferential arthrodesis using PEEK cages at the lumbar spine,” Journal of Spinal Disorders and Techniques, vol. 20, no. 4, pp. 278–281, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. W. Sears, “Posterior lumbar interbody fusion for degenerative spondylolisthesis: restoration of sagittal balance using insert-and-rotate interbody spacers,” The Spine Journal, vol. 5, no. 2, pp. 170–179, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. S. I. Suk, C. K. Lee, W. J. Kim, J. H. Lee, K. J. Cho, and H. G. Kim, “Addding posterior lumbar interbody fusion to pedicle screw fixation and posterolateral fusion after decompression in spondylolytic spondylolisthesis,” Spine, vol. 22, no. 2, pp. 210–220, 1997. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. Tokuhashi, Y. Ajiro, and N. Umezawa, “Outcomes of posterior fusion using pedicle screw fixation in patients ≥ 70 years with lumbar spinal canal stenosis,” Orthopedics, vol. 31, no. 11, article 1096, 2008. View at Google Scholar · View at Scopus
  67. D. L. Yan, F. X. Pei, J. Li, and C. L. Soo, “Comparative study of PILF and TLIF treatment in adult degenerative spondylolisthesis,” European Spine Journal, vol. 17, no. 10, pp. 1311–1316, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. C. H. Yu, C. T. Wang, and P. Q. Chen, “Instrumented posterior lumbar interbody fusion in adult spondylolisthesis,” Clinical Orthopaedics and Related Research, vol. 466, no. 12, pp. 3034–3043, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. D. K. Palmer, S. Inceoglu, and W. K. Cheng, “Stem fracture after total facet replacement in the lumbar spine: a report of two cases and review of the literature,” The Spine Journal, vol. 11, no. 7, pp. e15–e19, 2011. View at Google Scholar
  70. P. Korovessis, Z. Papazisis, G. Koureas, and E. Lambiris, “Rigid, semirigid versus dynamic instrumentation for degenerative lumbar spinal stenosis: a correlative radiological and clinical analysis of short-term results,” Spine, vol. 29, no. 7, pp. 735–742, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. D. Grob, A. Benini, A. Junge, and A. F. Mannion, “Clinical experience with the dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years,” Spine, vol. 30, no. 3, pp. 324–331, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Di Silvestre, F. Lolli, G. Bakaloudis, and P. Parisini, “Dynamic stabilization for degenerative lumbar scoliosis in elderly patients,” Spine, vol. 35, no. 2, pp. 227–234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. T. M. Stoll, G. Dubois, and O. Schwarzenbach, “The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system,” European Spine Journal, vol. 11, supplement 2, pp. S170–S178, 2002. View at Google Scholar · View at Scopus
  74. K. H. Kim, S. H. Lee, C. S. Shim et al., “Adjacent segment disease after interbody fusion and pedicle screw fixations for isolated L4-L5 Spondylolisthesis: a minimum five-year follow-up,” Spine, vol. 35, no. 6, pp. 625–634, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. P. Park, H. J. Garton, V. C. Gala, J. T. Hoff, and J. E. McGillicuddy, “Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature,” Spine, vol. 29, no. 17, pp. 1938–1944, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. J. Stulik, T. R. Pitzen, J. Chrobok et al., “Fusion and failure following anterior cervical plating with dynamic or rigid plates: 6-months results of a multi-centric, prospective, randomized, controlled study,” European Spine Journal, vol. 16, no. 10, pp. 1689–1694, 2007. View at Publisher · View at Google Scholar · View at Scopus