Table of Contents
ISRN Biomaterials
Volume 2013, Article ID 185376, 10 pages
Review Article

A Review of Surface Treatment Methods to Improve the Adhesive Cementation of Zirconia-Based Ceramics

1Occlusion and Fixed Prosthodontics Department, Dental School, UFMS, Campo Grande, MS, Brazil
2Department of Periodontics, Dental School, UFMS, Campo Grande, MS, Brazil
3Department of Implantology, Dental School, UFMS, Campo Grande, MS, Brazil
4Department of Restorative Dentistry and Dental Materials, Dental School, UFG, Goiânia, GO, Brazil
5Department of Dental Materials, Dental School, UNIUBE, Uberaba, MG, Brazil
6Faculdade de Odontologia, Universidade Federal de Goiás, Praça Universitária Esquina com 1a Avenida s/n, Setor Universitário, 74605-220 Goiânia, GO, Brazil

Received 17 July 2013; Accepted 29 August 2013

Academic Editors: A. Apicella, S.-J. Ding, R. Marx, and S. Sauro

Copyright © 2013 Rodrigo Dalla Lana Mattiello et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


In spite of high mechanical strength, zirconia-based ceramics (ZrO2) has poor bond strength after conventional bond cementation procedures, requiring different surface treatment methods (STMs). This review gathered information about the STM for adhesive cementation (AC) to ZrO2 in the PubMed database, considering in vitro studies pertaining to AC for acid-resistant ceramics (ZrO2) limited to peer-reviewed papers published in English between 1965 and 2013 in dental journals. Different STMs have been proposed for ZrO2: air-abrasion (laboratory or chairside) with silica- (Si-) coated aluminum particles, the use of materials containing phosphate monomers, primer or silane application, laser irradiation, Si vapor phase deposition, and selective infiltration etching. In conclusion, STMs improve bond strength of resin luting cement to ZrO2 mainly when tested in short time. STMs must be correlated to the type of ZrO2 and the resin cement.