Table of Contents
ISRN Biotechnology
Volume 2013 (2013), Article ID 186534, 23 pages
http://dx.doi.org/10.5402/2013/186534
Review Article

Linen Most Useful: Perspectives on Structure, Chemistry, and Enzymes for Retting Flax

Russell Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30606, USA

Received 14 November 2012; Accepted 7 December 2012

Academic Editors: A. D’Annibale, S. Revah, C. Scheckhuber, and H. Stamatis

Copyright © 2013 Danny E. Akin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. S. Borland, From Flower to Fabric, Textile World, 2002.
  2. P. G. Tortora and B. J. Collier, Understanding Textiles, Prentice-Hall, New Jersey, NJ, USA, 5th edition, 1997.
  3. I. T. Hamilton, “Linen,” Textiles, vol. 15, pp. 30–34, 1986. View at Google Scholar
  4. R. R. Franck, “The history and present position of linen,” in The Biology and Processing of Flax, H. S. S. Sharma and C. F. van Sumere, Eds., pp. 1–9, M. Publications, Belfast, Northern Ireland, 1992. View at Google Scholar
  5. R. Pfefferkorn, Oregon Fiber Flax for an American Linen Industry, O. S. C. Cooperative Association, Corvallis, Ore, USA, 1944.
  6. G. R. Stephens, “Connecticut fiber flax trials,” Bulletin 932, The Connecticut Agricultural Experiment Station, New Haven, Conn, USA, 1996. View at Google Scholar
  7. B. B. Robinson and T. B. Hutcheson, Circular 231, United States Department of Agriculture, Washington, DC, USA, 1932.
  8. W. M. Hurst, E. G. Nelson, J. E. Harmond, L. M. Klein, and D. W. Fishler, Station Bulletin 521, Oregon Agricultural Experiment Station and United States Department of Agriculture, Corvallis, Ore, USA, 1953.
  9. R. Kozlowski, “Producing for the market,” in Proceedings of the 4th European Regional Workshop on Flax, pp. 1–6, Institut Technique du Lin, 1996.
  10. R. Kozlowski, “Euroflax newsletter,” Tech. Rep. 2 (36), Institute of Natural Fibres & Medicinal Plants, Poznan, Poland, 2011. View at Google Scholar
  11. M. Machkiewicz, J. Barriga-Bedoya, J. Mankowski, and I. Pniewska, “Global flax market situation. Fiber foundations—transportation, clothing, and shelter in the bioeconomy,” in Proceedings of the International Conference on Flax and Other Bast Plants, pp. 408–412, Saskatoon, Canada, July 2008.
  12. R. Dodes, “Hemmed in by cotton, Hanes eases into flax,” Wall Street Journal. In press.
  13. J. B. Rodie, “Flax unshackled,” Textile World. In press.
  14. D. D. McAlister III, J. A. Foulk, D. E. Akin, and P. A. Annis, “Cotton fibres: proportion and interaction with flax fibres in blends: focus on rotor spun yarn,” in Proceedings of the 26th International Cotton Conference, pp. 207–211, Faserinstitut Bremen, Bremen, Germany, 2002.
  15. D. R. Berglund, “Flax: new uses and demands,” in Trends in New Crops and New Uses, J. Janick and A. Whipkey, Eds., pp. 358–360, ASHS Press, Alexandria, Va, USA, 2002. View at Google Scholar
  16. in Proceedings of the 59th Meeting of the Flax Institute of the United States, Institute of the United States, Fargo, ND, USA, March 2002.
  17. J. F. Carter, “Potential of flaxseed and flaxseed oil in baked goods and other products in human nutrition,” Cereal Foods World, vol. 38, pp. 753–759, 1993. View at Google Scholar
  18. D. E. Akin, “Flax fiber,” in Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, New York, NY, USA, 2012. View at Google Scholar
  19. “Fiber foundations—transportation, clothing and shelter in the bioeconomy,” in Proceedings of the International Conference on Flax and other Bast Plants, pp. 21–23, Saskatoon, Canada, July 2008.
  20. T. Hänninen and M. Hughes, “Historical, contemporary and future applications,” in Industrial Applications of Natural Fibres, J. Müssig, Ed., pp. 385–395, John Wiley & Sons, Chichester, UK, 2010. View at Google Scholar
  21. S. Nandy and G. G. Rowland, “Dual purpose flax (Linum usitatissimum L.) improvement using anatomical and molecular approaches, fiber foundations—transportation, clothing and shelter in the bioeconomy,” in Proceedings of the International Conference on Flax and Other Bast Plants, pp. 31–39, Saskatoon, Canada, July 2008.
  22. K. W. Dormier, “An overview of the flax fibre industry in North America,” in Proceedings of the 59th Flax Institute of the United States, pp. 89–91, North Dakota State University, Fargo, ND, USA, 2002.
  23. W. H. Morrison III and D. E. Akin, “Chemical composition of components comprising bast tissue in flax,” Journal of Agricultural and Food Chemistry, vol. 49, no. 5, pp. 2333–2338, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. D. E. Akin, G. R. Gamble, W. H. Morrison III, L. L. Rigsby, and R. B. Dodd, “Chemical and structural analysis of fiber and core tissues from flax,” Journal of the Science of Food and Agriculture, vol. 72, pp. 155–165, 1996. View at Google Scholar
  25. W. H. Morrison III, D. E. Akin, D. S. Himmelsbach, and G. R. Gamble, “Chemical, microscopic, and instrumental analysis of graded flax fibre and yarn,” Journal of the Science of Food and Agriculture, vol. 79, pp. 3–10, 1999. View at Google Scholar
  26. D. E. Akin, W. H. Morrison III, G. R. Gamble, L. L. Rigsby, G. Henriksson, and K. E. L. Eriksson, “Effect of retting enzymes on the structure and composition of flax cell walls,” Textile Research Journal, vol. 67, no. 4, pp. 279–287, 1997. View at Google Scholar · View at Scopus
  27. W. H. Morrison III, D. D. Archibald, H. S. S. Sharma, and D. E. Akin, “Chemical and physical characterization of water- and dew-retted flax fibers,” Industrial Crops and Products, vol. 12, no. 1, pp. 39–46, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. D. E. Akin, W. H. Morrison III, L. L. Rigsby, and R. B. Dodd, “Plant factors influencing enzyme retting of fiber and seed flax,” Journal of Agricultural and Food Chemistry, vol. 49, no. 12, pp. 5778–5784, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. C. C. Chen, R. Adolphson, J. F. D. Dean, K. E. L. Eriksson, M. W. W. Adams, and J. Westpheling, “Release of lignin from kraft pulp by a hyperthermophilic xylanase from Thermatoga maritima,” Enzyme and Microbial Technology, vol. 20, no. 1, pp. 39–45, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. D. E. Akin, D. Slomczynski, L. L. Rigsby, and K. E. L. Eriksson, “Retting flax with endopolygalacturonase from Rhizopus oryzae,” Textile Research Journal, vol. 72, no. 1, pp. 27–34, 2002. View at Google Scholar · View at Scopus
  31. D. E. Akin, L. L. Rigsby, and W. Perkins, “Quality properties of flax fibers retted with enzymes,” Textile Research Journal, vol. 69, no. 10, pp. 747–753, 1999. View at Google Scholar · View at Scopus
  32. D. E. Akin, J. A. Foulk, and R. B. Dodd, “Influence on flax fibers of components in enzyme retting formulations,” Textile Research Journal, vol. 72, no. 6, pp. 510–514, 2002. View at Google Scholar · View at Scopus
  33. D. E. Akin, J. A. Foulk, R. B. Dodd, and D. D. McAlister III, “Enzyme-retting of flax and characterization of processed fibers,” Journal of Biotechnology, vol. 89, no. 2-3, pp. 193–203, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. J. A. Foulk, D. E. Akin, and R. B. Dodd, “Influence of pectinolytic enzymes on retting effectiveness and resultant fiber properties,” BioResources, vol. 3, no. 1, pp. 155–169, 2008. View at Google Scholar · View at Scopus
  35. D. E. Akin, B. Condon, M. Sohn, J. A. Foulk, R. B. Dodd, and L. L. Rigsby, “Optimization for enzyme-retting of flax with pectate lyase,” Industrial Crops and Products, vol. 25, no. 2, pp. 136–146, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. J. D. Evans, D. E. Akin, W. H. Morrison III, D. S. Himmelsbach, D. D. McAlister, and J. A. Foulk, “Modifying dew-retted flax fibers and yarns with a secondary enzymatic treatment,” Textile Research Journal, vol. 73, no. 10, pp. 901–906, 2003. View at Google Scholar · View at Scopus
  37. C. F. van Sumere, “Retting of flax with special reference to enzyme-retting,” in The Biology and Processing of Flax, H. S. S. Sharma and C. F. van Sumere, Eds., pp. 157–198, M Publications, Belfast, Northern Ireland, 1992. View at Google Scholar
  38. D. E. Akin, “Flax—structure, chemistry, retting, and processing,” in Industrial Applications of Natural Fibres, J. Müssig, Ed., pp. 89–108, John Wiley & Sons, Chichester, UK, 2010. View at Google Scholar
  39. K. R. Stern, S. Jansky, and J. E. Bidlack, Introductory Plant Biology, McGraw-Hill, New York, NY, USA, 9th edition, 2003.
  40. D. E. Akin, L. L. Rigsby, and W. H. Morrison III, “Oil red as a histochemical stain for natural fibers and plant cuticle,” Industrial Crops and Products, vol. 19, no. 2, pp. 119–124, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. W. B. Achwal and N. Roy, “Rapid staining test to assess residual wax in pretreated cotton fabrics,” 1985. View at Google Scholar · View at Scopus
  42. D. S. Himmelsbach, S. Khahili, and D. E. Akin, “Near-infrared—fourier-transform—Raman microspectroscopic imaging of flax stems,” Vibrational Spectroscopy, vol. 19, no. 2, pp. 361–367, 1999. View at Google Scholar · View at Scopus
  43. G. Henriksson, D. E. Akin, R. T. Hanlin et al., “Identification and retting efficiencies of fungi isolated from dew-retted flax in the United States and Europe,” Applied and Environmental Microbiology, vol. 63, no. 10, pp. 3950–3956, 1997. View at Google Scholar · View at Scopus
  44. D. E. Akin, L. L. Rigsby, G. Henriksson, and K. E. L. Eriksson, “Structural effects on flax stems of three potential retting fungi,” Textile Research Journal, vol. 68, no. 7, pp. 515–519, 1998. View at Google Scholar · View at Scopus
  45. G. Henriksson, D. E. Akin, L. L. Rigsby, N. Patel, and K. E. L. Eriksson, “Influence of chelating agents and mechanical pretreatment on enzymatic retting of flax,” Textile Research Journal, vol. 67, no. 11, pp. 829–836, 1997. View at Google Scholar · View at Scopus
  46. W. H. Morrison III, R. Holser, and D. E. Akin, “Cuticular wax from flax processing waste with hexane and super critical carbon dioxide extractions,” Industrial Crops and Products, vol. 24, no. 2, pp. 119–122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. R. A. Holser and D. E. Akin, “Extraction of lipids from flax processing waste using hot ethanol,” Industrial Crops and Products, vol. 27, no. 3, pp. 236–240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. K. V. Sarkanen and C. H. Ludwig, “Definition and nomenclature,” in Lignins: Occurrence, Formation, Structure, and Reactions, K. V. Sarkanen and C. H. Ludwig, Eds., pp. 1–18, Wiley-Interscience, New York, NY, USA, 1971. View at Google Scholar
  49. K. Ross and G. Mazza, “Characteristics from flax shives as affected by extraction conditions,” International Journal of Molecular Science, vol. 11, pp. 4035–4050, 2010. View at Google Scholar
  50. R. A. Blanchette, E. W. Krueger, J. E. Haight, M. Akhtar, and D. E. Akin, “Cell wall alterations in loblolly pine wood decayed by the white-rot fungus, Ceriporiopsis subvermispora,” Journal of Biotechnology, vol. 53, no. 2-3, pp. 203–213, 1997. View at Publisher · View at Google Scholar · View at Scopus
  51. W. E. Marshall, L. H. Wartelle, and D. E. Akin, “Flax shive as a source of activated carbon for metals remediation,” BioResources, vol. 2, no. 1, pp. 82–90, 2007. View at Google Scholar · View at Scopus
  52. K. T. Klasson, L. H. Wartelle, I. M. Lima, W. E. Marshall, and D. E. Akin, “Activated carbons from flax shive and cotton gin waste as environmental adsorbents for the chlorinated hydrocarbon trichloroethylene,” Bioresource Technology, vol. 100, no. 21, pp. 5045–5050, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. J. W. Kim and G. Mazza, “Extraction and separation of arbohydrates and phenolic compounds in flax shives with pH-controlled pressurized low polarity water,” Journal of Agricultural and Food Chemistry, vol. 57, no. 5, pp. 1805–1813, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Sohn, F. E. Barton II, W. H. Morrison III, and D. E. Akin, “Prediction of shive content in pilot plant processed flax by near infrared reflectance spectroscopy,” Journal of Near Infrared Spectroscopy, vol. 12, no. 4, pp. 251–258, 2004. View at Google Scholar · View at Scopus
  55. M. Sohn, F. E. Barton II, D. E. Akin, and W. H. Morrison III, “A new approach for estimating purity of processed flax fibre by NIR spectroscopy,” Journal of Near Infrared Spectroscopy, vol. 12, no. 4, pp. 259–262, 2004. View at Google Scholar · View at Scopus
  56. D. E. Akin, “Standards for flax fiber,” Standardization News, vol. 33, no. 9, pp. 22–25, 2005. View at Google Scholar · View at Scopus
  57. D. E. Akin, “Flax—ASTM standardization and harmonization,” in Industrial Applications of Natural Fibres, J. M. Müssig, Ed., pp. 371–379, John Wiley & Sons, Chichester, UK, 2010. View at Google Scholar
  58. J. A. de Haseth, D. E. Akin, and F. E. Barton II, “Sensors and chemometrics for flax fiber quality and for processing, fiber foundations—transportation, clothing and shelter in the bioeconomy,” in Proceedings of the International Conference on Flax and Other Bast Plants, pp. 10–15, Saskatoon, Canada, July 2008.
  59. F. E. Barton II, D. E. Akin, W. H. Morrison III, A. Ulrich, and D. D. Archibald, “Analysis of fiber content in flax stems by near-infrared spectroscopy,” Journal of Agricultural and Food Chemistry, vol. 50, no. 26, pp. 7576–7580, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Khalili, D. E. Akin, B. Pettersson, and G. Henriksson, “Fibernodes in flax and other bast fibers,” Journal of Applied Botany, vol. 76, no. 5-6, pp. 133–138, 2002. View at Google Scholar · View at Scopus
  61. R. H. Peters, “The chemistry of fibers,” Textile Chemistry, vol. 1, pp. 168–174, 1963. View at Google Scholar
  62. G. Buschle-Diller, S. H. Zeronian, N. Pan, and M. Y. Yoon, “Enzymatic hydrolysis of cotton, linen, ramie, and viscose rayon fabrics,” Textile Research Journal, vol. 64, no. 5, pp. 270–279, 1994. View at Google Scholar · View at Scopus
  63. B. Focher, A. Marzetti, and H. S. S. Sharma, “Changes in the structure and properties of flax fibre during processing,” in The Biology and Processing of Flax, H. S. S. Sharma and C. F. van Sumere, Eds., pp. 329–342, M. Publications, Belfast, Northern Ireland, 1992. View at Google Scholar
  64. H. L. Bos, M. J. A. van den Oever, and O. C. J. J. Peters, “Tensile and compressive properties of flax fibres for natural fibre reinforced composites,” Journal of Materials Science, vol. 37, no. 8, pp. 1683–1692, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. D. E. Akin, G. Henriksson, J. D. Evans, A. P. S. Adamsen, J. A. Foulk, and R. B. Dodd, “Progress in enzyme-retting of flax,” Journal of Natural Fibers, vol. 1, no. 1, pp. 21–47, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. C. Morvan, C. Andème-Onzighi, R. Girault, D. S. Himmelsbach, A. Driouich, and D. E. Akin, “Building flax fibres: more than one brick in the walls,” Plant Physiology and Biochemistry, vol. 41, no. 11-12, pp. 935–944, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. T. A. Gorshkova, S. E. Wyatt, V. V. Salnikov et al., “Cell-wall polysaccharides of developing flax plants,” Plant Physiology, vol. 110, no. 3, pp. 721–729, 1996. View at Google Scholar · View at Scopus
  68. D. Stewart, G. J. McDougall, and A. Baty, “Fourier-transform infrared microspectroscopy of anatomically different cells of flax (Linum usitatissimum) stems during development,” Journal of Agricultural and Food Chemistry, vol. 43, no. 7, pp. 1853–1858, 1995. View at Google Scholar · View at Scopus
  69. R. Girault, I. His, C. Andeme-Onzighi, A. Driouich, and C. Morvan, “Identification and partial characterization of proteins and proteoglycans encrusting the secondary cell walls of flax fibres,” Planta, vol. 211, no. 2, pp. 256–264, 2000. View at Google Scholar · View at Scopus
  70. T. A. Gorshkova, V. V. Salnikov, N. M. Pogodina et al., “Composition and distribution of cell wall phenolic compounds flax (Linum usitatissimum L.) stem tissues,” Annals of Botany, vol. 85, no. 4, pp. 477–486, 2000. View at Publisher · View at Google Scholar · View at Scopus
  71. G. D. Love, C. E. Snape, M. C. Jarvis, and I. M. Morrison, “Determination of phenolic structures in flax fibre by solid-state 13C NMR,” Phytochemistry, vol. 35, no. 2, pp. 489–491, 1994. View at Publisher · View at Google Scholar · View at Scopus
  72. W. H. Morrison III, D. S. Himmelsbach, D. E. Akin, and J. D. Evans, “Chemical and spectroscopic analysis of lignin in isolated flax fibers,” Journal of Agricultural and Food Chemistry, vol. 51, no. 9, pp. 2565–2568, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. H. S. S. Sharma and C. F. van Sumere, “Enzyme treatment of flax,” The Genetic Engineer and Biotechnologist, vol. 12, pp. 19–23, 1992. View at Google Scholar
  74. G. R. Gamble, M. E. Snook, G. Henriksson, and D. E. Akin, “Phenolic constituents in flax bast tissue and inhibition of cellulase and pectinase,” Biotechnology Letters, vol. 22, no. 9, pp. 741–746, 2000. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Bandyopadhyay-Ghosh, S. B. Ghosh, and M. Sain, “Cellulose nanocomposites,” in EdIndustrial Applications of Natural Fibres, J. Müssig, Ed., pp. 457–480, John Wiley & Sons, Chichester, UK, 2010. View at Google Scholar
  76. D. E. Akin, “Chemistry of plant fibres,” in Industrial Applications of Natural Fibres, J. Müssig, Ed., John Wiley & Sons, Chichester, UK.
  77. T. Sakai, T. Sakamoto, J. Hallaert, and E. J. Vandamme, “Pectin, pectinase, and protopectinase: production, properties, and applications,” Advances in Applied Microbiology, vol. 39, pp. 213–294, 1993. View at Google Scholar · View at Scopus
  78. E. A. Davis, C. Derouet, C. H. du Penhoat, and C. Morvan, “Isolation and an N.M.R. study of pectins from flax (Linum usitatissimum L.),” Carbohydrate Research, vol. 197, pp. 205–215, 1990. View at Google Scholar · View at Scopus
  79. W. J. M. Meijer, N. Vertregt, B. Rutgers, and M. van de Waart, “The pectin content as a measure of the retting and rettability of flax,” Industrial Crops and Products, vol. 4, no. 4, pp. 273–284, 1995. View at Google Scholar · View at Scopus
  80. H. S. S. Sharma, “Chemical retting of flax using chelating compounds,” vol. 113, pp. 159–165, 1988. View at Google Scholar · View at Scopus
  81. D. S. Himmelsbach, S. Khalili, and D. E. Akin, “FT-IR microspectroscopic imaging of flax (Linum usitatissimum L.) stems,” Cellular and Molecular Biology, vol. 44, no. 1, pp. 99–108, 1998. View at Google Scholar · View at Scopus
  82. C. Andeme-Onzighi, R. Girault, I. His, C. Morvan, and A. Driouich, “Immunocytochemical characterization of early-developing flax fiber cell walls,” Protoplasma, vol. 213, no. 3-4, pp. 235–245, 2000. View at Google Scholar · View at Scopus
  83. I. His, C. Andème-Onzighi, C. Morvan, and A. Driouich, “Microscopic studies on mature flax fibers embedded in LR White: immunogold localization of cell wall matrix polysaccharides,” Journal of Histochemistry and Cytochemistry, vol. 49, no. 12, pp. 1525–1535, 2002. View at Google Scholar · View at Scopus
  84. A. Jauneau, M. Quentin, and A. Driouich, “Micro-heterogeneity of pectins and calcium distribution in the epidermal and cortical parenchyma cell walls of flax hypocotyl,” Protoplasma, vol. 198, no. 1-2, pp. 9–19, 1997. View at Google Scholar · View at Scopus
  85. A. Jauneau, A. Cabin-Flaman, M. C. Verdus, C. Ripoll, and M. Thellier, “Involvement of calcium in the inhibition of endopolygalacturonase,” Plant Physiology and Biochemistry, vol. 32, no. 6, pp. 839–846, 1994. View at Google Scholar · View at Scopus
  86. I. A. Ansari, G. C. East, and D. J. Johnson, “Structure-property relationships in natural cellulosic fibres. Part I: characterisation,” Journal of the Textile Institute, vol. 90, no. 1, pp. 469–480, 1990. View at Google Scholar · View at Scopus
  87. A. E. Brown, H. S. S. Sharma, and D. L. R. Black, “Relationships between pectin content of stems of flax cultivars, fungal cell wall-degrading enzymes and pre-harvest retting,” Annals of Applied Biology, vol. 109, pp. 345–351, 1986. View at Google Scholar
  88. A. M. Bochek, N. M. Zabivalova, I. I. Shamolina, and S. A. Grishanov, “Isolation of pectins from flax pedicels and fibers and their characterization,” Russian Journal of Applied Chemistry, vol. 75, no. 9, pp. 1517–1521, 2002. View at Publisher · View at Google Scholar · View at Scopus
  89. C. Sultana, “Scutching of retted-flax straw,” in The Biology and Processing of Flax, H. S. S. Sharma and C. F. van Sumere, Eds., pp. 261–274, M. Publications, Belfast, Ireland, 1992. View at Google Scholar
  90. T. Ross, “Preparing and spinning of flax fibre,” in The Biology and Processing of Flax, H. S. S. Sharma and C. F. van Sumere, Eds., pp. 275–296, M. Publications, Belfast, Ireland, 1992. View at Google Scholar
  91. A. Daenekindt, “Flax, hemp, and allied fibres in the world,” Euroflax Newsletter, vol. 21, no. 1, pp. 6–9, 2004. View at Google Scholar
  92. H. S. S. Sharma and G. J. Faughey, “Comparison of subjective and objective methods to assess flax straw cultivars and fibre quality after dew-retting,” Annals of Applied Biology, vol. 135, no. 2, pp. 495–501, 1999. View at Google Scholar · View at Scopus
  93. A. E. Brown, “Epicoccum nigrum, a primary saprophyte involved in the retting of flax,” Transactions of the British Mycological Society, vol. 83, no. 1, pp. 29–35, 1984. View at Google Scholar · View at Scopus
  94. D. L. Easson and E. N. J. Long, “Pre-harvest retting of flax with glyphosate,” in The Biology and Processing of Flax, H. S. S. Sharma and C. F. van Sumere, Eds., pp. 213–228, M. Publications, Belfast, Ireland, 1992. View at Google Scholar
  95. A. M. Goodman, A. R. Ennos, and I. Booth, “A mechanical study of retting in glyphosate treated flax stems (Linum usitatissimum),” Industrial Crops and Products, vol. 15, no. 2, pp. 169–177, 2002. View at Publisher · View at Google Scholar · View at Scopus
  96. H. S. S. Sharma, “The role of bacteria in retting of desiccated flax during damp weather,” Applied Microbiology and Biotechnology, vol. 24, no. 6, pp. 463–467, 1986. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Horne, R. Harwood, P. McCormick, and J. Harwood, “The commercial production of short-fibre flax for cottonization, fiber foundations—transportation, clothing, and shelter in the bioeconomy,” in Proceedings of the International Conference on Flax and Other Bast Plants, pp. 129–136, Saskatoon, Canada, July 2008.
  98. A. Dujardin, Vlas-roten, De Westvlaamsche Boekhandel s.v. Groeninghe, Kortrijk, Belgium.
  99. G. Henriksson, K. E. L. Eriksson, L. Kimmel, and D. E. Akin, “Chemical/physical retting of flax using detergent and oxalic acid at high pH,” Textile Research Journal, vol. 68, no. 12, pp. 942–947, 1998. View at Google Scholar · View at Scopus
  100. H. S. S. Sharma, “Studies on chemical and enzyme retting of flax on a semi-industrial scale and analysis of the effluents for their psycho-chemical components,” International Biodeterioration, vol. 23, no. 6, pp. 329–342, 1987. View at Google Scholar · View at Scopus
  101. M. J. A. van den Oever, N. Bas, L. J. M. van Soest, C. Melis, and J. E. G. van Dam, “Improved method for fibre content and quality analysis and their application to flax genetic diversity investigations,” Industrial Crops and Products, vol. 18, no. 3, pp. 231–243, 2003. View at Publisher · View at Google Scholar · View at Scopus
  102. H. Costard, “Process for treating sclerenchyma fibers, in particular flax,” U.S. Patent # 5,666,696 Sept, 16, 1997.
  103. H. Zimmer and K. D. Kloss, “Ultrasonic break down of hemp,” in Proceedings of the Bioresource Hemp Symposium, Frankfurt, Germany, March 1995.
  104. M. Tubach and R. W. Kessler, “Interdisciplinary approach for new flax products: examples of applied research at the IAF,” in Proceedings of the World Fibre Flax Symposium, pp. 71–86, Connecticut Agricultural Experiment Station, 1994.
  105. M. Sotton and M. Ferrari, “Le lin ultra-affine par le traitement hydrolyse flash,” L’Industrie Textile, vol. 1197, pp. 58–60, 1989. View at Google Scholar
  106. R. W. Kessler, U. Becker, R. Kohler, and B. Goth, “Steam explosion of flax—a superior technique for upgrading fibre value,” Biomass and Bioenergy, vol. 14, no. 3, pp. 237–249, 1998. View at Publisher · View at Google Scholar · View at Scopus
  107. V. G. Yachmenev, E. J. Blanchard, and A. H. Lambert, “Use of ultrasonic energy in the enzymatic treatment of cotton fabric,” Industrial and Engineering Chemistry Research, vol. 37, no. 10, pp. 3919–3923, 1998. View at Google Scholar · View at Scopus
  108. C. F. van Sumere and H. S. S. Sharma, “Analyses of fine flax fibre produced by enzymatic retting,” Aspects of Applied Biology, vol. 28, pp. 15–20, 1991. View at Google Scholar
  109. H. S. S. Sharma, “Screening of polysaccharide-degrading enzymes for retting flax stem,” International Biodeterioration, vol. 23, no. 3, pp. 181–186, 1987. View at Google Scholar · View at Scopus
  110. H. S. S. Sharma, J. Lefevre, and J. Boucaud, “Role of microbial enzymes during retting and their effect on fibre characteristics,” in The Biology and Processing of Flax, H. S. S. Sharma and C. F. van Sumere, Eds., pp. 199–212, M. Publications, Belfast, Ireland, 1992. View at Google Scholar
  111. H. S. S. Sharma and C. F. van Sumere, Eds., The Biology and Processing of Flax, M. Publications, Belfast, Ireland, 1992.
  112. G. Henriksson, D. E. Akin, D. Slomczynski, and K. E. L. Eriksson, “Production of highly efficient enzymes for flax retting by Rhizomucor pusillus,” Journal of Biotechnology, vol. 68, no. 2-3, pp. 115–123, 1999. View at Publisher · View at Google Scholar · View at Scopus
  113. A. P. S. Adamsen, D. E. Akin, and L. L. Rigsby, “Chelating agents and enzyme retting of flax,” Textile Research Journal, vol. 72, no. 4, pp. 296–302, 2002. View at Google Scholar · View at Scopus
  114. A. P. S. Adamsen, D. E. Akin, and L. L. Rigsby, “Chemical retting of flax straw under akaline conditions,” Textile Research Journal, vol. 72, no. 9, pp. 789–794, 2002. View at Google Scholar · View at Scopus
  115. ASTM D 1445-95, “Standard test method for breaking strength and elongation for cotton fibers (flat bundle method),” Annual Book of Standards, sec. 7 Textiles, ASTM, West Conshohocken, Pa, USA, 1997.
  116. ASTM D 1448-90, “Standard test method for breaking strength and elongation for cotton fibers,” Annual Book of Standards, sec. 7 Textiles, ASTM, West Conshohocken, Pa, USA, 1997.
  117. International Standard 2370, Textiles—determination of fineness of flax fibres, 2nd ed., ref # ISO 2370-1980 (E). International Organization of Standardization, Switzerland, 1980.
  118. J. A. Foulk, D. E. Akin, and R. B. Dodd, “Miniature spinning enzyme-retted flax fibers,” Journal of Natural Fibers, vol. 6, no. 1, pp. 1–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. D. E. Akin, R. B. Dodd, W. Perkins, G. Henriksson, and K. E. L. Eriksson, “Spray enzymatic retting: a new method for processing flax fibers,” Textile Research Journal, vol. 70, no. 6, pp. 486–494, 2000. View at Google Scholar · View at Scopus
  120. J. A. Foulk, D. E. Akin, and R. B. Dodd, “Processing techniques for improving enzyme-retting of flax,” Industrial Crops and Products, vol. 13, no. 3, pp. 239–248, 2001. View at Publisher · View at Google Scholar · View at Scopus
  121. D. E. Akin, W. H. Morrison III, L. L. Rigsby, J. D. Evans, and J. A. Foulk, “Influence of water presoak on enzyme-retting of flax,” Industrial Crops and Products, vol. 17, no. 3, pp. 149–159, 2003. View at Publisher · View at Google Scholar · View at Scopus
  122. D. E. Akin, R. B. Dodd, and J. A. Foulk, “Pilot plant for processing flax fiber,” Industrial Crops and Products, vol. 21, no. 3, pp. 369–378, 2005. View at Publisher · View at Google Scholar · View at Scopus
  123. D. E. Akin, H. H. Epps, D. D. Archibald, and H. S. S. Sharma, “Color measurement of flax retted by various means,” Textile Research Journal, vol. 70, no. 10, pp. 852–858, 2000. View at Google Scholar · View at Scopus
  124. H. H. Epps, D. E. Akin, J. A. Foulk, and R. B. Dodd, “Color of enzyme-retted flax fibers affected by processing, cleaning, and cottonizing,” Textile Research Journal, vol. 71, no. 10, pp. 916–921, 2001. View at Google Scholar · View at Scopus
  125. D. K. Durden, J. N. Etters, A. K. Sarkar, L. A. Henderson, and J. E. Hill, “Advances in commercial biopreparation of cotton with alkaline pectinase,” AATCC Reviews, vol. 1, no. 8, pp. 28–31, 2001. View at Google Scholar · View at Scopus
  126. J. N. Etters, A. K. Sarkar, L. A. Henderson, and J. Liu, “The influence of biopreparation of cotton with alkaline pectinase on dyeing properties,” AATCC Reviews, vol. 1, no. 5, pp. 22–24, 2001. View at Google Scholar · View at Scopus
  127. V. Antonov, J. Marek, M. Bjelkova, P. Smirous, and H. Fischer, “Easily available enzymes as natural retting agents,” Biotechnology Journal, vol. 2, no. 3, pp. 342–346, 2007. View at Publisher · View at Google Scholar · View at Scopus
  128. J. Marek, V. Antonov, M. Bjelkova, P. Smirous, H. Fischer, and S. Janosik, “Enzymatic bioprocessing—new tool for extensive natural fibre source utilization, fiber foundations—transportation, clothing, and shelter in the bioeconomy,” in Proceedings of the International Conference on Flax and Other Bast Plants, pp. 159–169, Saskatoon, Canada, July 2008.
  129. J. D. Evans, D. E. Akin, and J. A. Foulk, “Flax-retting by polygalacturonase-containing enzyme mixtures and effects on fiber properties,” Journal of Biotechnology, vol. 97, no. 3, pp. 223–231, 2002. View at Publisher · View at Google Scholar · View at Scopus
  130. J. Zhang, G. Henriksson, and G. Johansson, “Polygalacturonase is the key component in enzymatic retting of flax,” Journal of Biotechnology, vol. 81, no. 1, pp. 85–89, 2000. View at Publisher · View at Google Scholar · View at Scopus
  131. D. S. Himmelsbach, S. Khalili, and D. E. Akin, “The use of FT-IR microspectroscopic mapping to study the effects of enzymatic retting of flax (Linum usitatissimum L) stems,” Journal of the Science of Food and Agriculture, vol. 82, no. 7, pp. 685–696, 2002. View at Publisher · View at Google Scholar · View at Scopus
  132. J. Zhang, G. Johansson, B. Pettersson et al., “Effects of acidic media pre-incubation on flax enzyme retting efficiency,” Textile Research Journal, vol. 73, no. 3, pp. 263–267, 2003. View at Google Scholar · View at Scopus
  133. F. Brühlmann, M. Leupin, K. H. Erismann, and A. Fiechter, “Enzymatic degumming of ramie bast fibers,” Journal of Biotechnology, vol. 76, no. 1, pp. 43–50, 2002. View at Publisher · View at Google Scholar · View at Scopus
  134. D. Rho, J. Yang, M. -J. Lorrain et al., “Processing of flax fibers for biocomposites using a thermostable pectate lyase, fiber foundations—transportation, clothing, and shelter in the bioeconomy,” in Proceedings of the International Conference on Flax and Other Bast Plants, pp. 201–210, Saskatoon, Canada, July 2008.
  135. A. . Foulk, D. Rho, M. M. Alcock, C. A. Ulven, and S. Huo, “Modifications caused by enzyme-retting and their effect on biocomposite performance,” Advances in Materials Science and Engineereing, vol. 2011, Article ID 179023, 9 pages, 2011. View at Publisher · View at Google Scholar
  136. W. Hu, M.-T. Ton-That, J. Denault, D. Rho, J. Yang, and P. C. K. Lau, “Comparison between dew-retted and enzyme-retted flax fibers as reinforcing material for composites,” Polmer Engineering and Science, vol. 52, no. 1, pp. 165–171, 2012. View at Publisher · View at Google Scholar
  137. C. Ekblad, B. Pettersson, J. Zhang, S. Jernberg, and G. Henriksson, “Enzymatic-mechanical pulping of bast fibers from flax and hemp,” Cellulose Chemistry and Technology, vol. 39, no. 1-2, pp. 95–103, 2005. View at Google Scholar · View at Scopus
  138. J. D. Evans, D. E. Akin, W. H. Morrison III, D. S. Himmelsbach, and J. A. Foulk, “Modifying dew-retted flax fibers by means of an air-atomized enzyme treatment,” Textile Research Journal, vol. 72, no. 7, pp. 579–585, 2002. View at Google Scholar · View at Scopus
  139. H. Fischer, J. Müssig, and C. Bluhm, “Enzymatic modification of hemp fibres for sustainable production of high quality materials: influence of processing parameters,” Journal of Natural Fibers, vol. 3, no. 2-3, pp. 39–53, 2006. View at Publisher · View at Google Scholar · View at Scopus
  140. W. H. Morrison III, D. E. Akin, G. Ramaswamy, and B. Baldwin, “Evaluating chemically retted kenaf using chemical, histochemical, and microspectrophotometric analyses,” Textile Research Journal, vol. 66, no. 10, pp. 651–656, 1996. View at Google Scholar · View at Scopus
  141. G. N. Ramaswamy, C. G. Ruff, and C. R. Boyd, “Effect of bacterial and chemical retting on kenaf fiber quality,” Textile Research Journal, vol. 64, no. 5, pp. 305–308, 1994. View at Google Scholar · View at Scopus
  142. D. E. Akin, A. Sethuraman, W. H. Morrison III, S. A. Martin, and K. E. L. Eriksson, “Microbial delignification with white rot fungi improves forage digestibility,” Applied and Environmental Microbiology, vol. 59, no. 12, pp. 4274–4282, 1993. View at Google Scholar · View at Scopus
  143. D. E. Akin, W. H. Morrison III, L. L. Rigsby, G. R. Gamble, A. Sethuraman, and K. E. L. Eriksson, “Biological delignification of plant components by the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus,” Animal Feed Science and Technology, vol. 63, no. 1–4, pp. 305–321, 1996. View at Google Scholar · View at Scopus