Table of Contents
ISRN Veterinary Science
Volume 2013 (2013), Article ID 191708, 7 pages
http://dx.doi.org/10.1155/2013/191708
Research Article

Assessment of Fatty Liver Syndrome and Its Predisposing Factors in a Dairy Herd from Venezuela

Departament of Animal Nutrition and Forages, Veterinary Sciences, University Centroccidental Lisandro Alvarado, Tarabana 3001, Venezuela

Received 28 February 2013; Accepted 4 April 2013

Academic Editors: J. F. Hocquette and W. Yang

Copyright © 2013 Clara I. Gonzalez and Oswaldo Rosendo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. K. Drackley, H. M. Dann, G. N. Douglas et al., “Physiological and pathological adaptations in dairy cows that may increase susceptibility to periparturient diseases and disorders,” Italian Journal of Animal Science, vol. 4, no. 4, pp. 323–344, 2005. View at Google Scholar · View at Scopus
  2. R. Jorritsma, H. Jorritsma, Y. H. Schukken, and G. H. Wentink, “Relationships between fatty liver and fertility and some periparturient diseases in commercial dutch dairy herds,” Theriogenology, vol. 54, no. 7, pp. 1065–1074, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. O. M. Radostits, C. C. Gay, D. C. Blood, and K. W. Hinchcliff, Veterinary Medicine, WB Saunders, London, UK, 9th edition, 1999.
  4. T. Ohgi, S. Kamimura, Y. Minezaki, and M. Takahashi, “Relationship between fat accumulation in the liver and energy intake, milk fat yield and blood metabolites in dairy cows,” Animal Science Journal, vol. 76, no. 6, pp. 549–557, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. T. J. Fronk, L. H. Schultz, and A. R. Hardie, “Effect of dry period overconditioning on subsequent metabolic disorders and performance of dairy cows,” Journal of Dairy Science, vol. 63, pp. 1080–1090, 1980. View at Publisher · View at Google Scholar
  6. I. M. Reid, C. J. Roberts, R. J. Treacher, and L. A. Williams, “Effect of body condition at calving on the health and performance of dairy cows,” Animal Production, vol. 43, pp. 7–15, 1986. View at Publisher · View at Google Scholar
  7. T. Rukkwamsuk, T. Wensing, and M. J. H. Geelen, “Effect of overfeeding during the dry period on regulation of adipose tissue metabolism in dairy cows during the periparturient period,” Journal of Dairy Science, vol. 81, no. 11, pp. 2904–2911, 1998. View at Google Scholar · View at Scopus
  8. J. McCormack, “Fat-cow syndrome and its complications,” Veterinary Medicine, Small Animal Clinician, vol. 73, no. 8, pp. 1057–1060, 1978. View at Google Scholar · View at Scopus
  9. National Research Council (NRC), Nutrient Requirements of Dairy Cattle, National Academies Press, Washington, DC, USA, 7th edition, 2001.
  10. AOAC, Official Methods of Analysis, AOAC, Washington, DC, USA, 15th edition, 1990.
  11. AOAC, Official Methods of Analysis, AOAC, Washington, DC, USA, 17th edition, 2002.
  12. S. Lo, J. C. Russell, and A. W. Taylor, “Determination of glycogen in small tissue samples,” Journal of applied physiology, vol. 28, no. 2, pp. 234–236, 1970. View at Google Scholar · View at Scopus
  13. E. Wildman, G. Jones, P. Wagner, R. Boman, H. F. Troutt Jr., and T. Lesch, “A dairy cow body condition scoring system and its relationship to selected production characteristics,” Journal of Dairy Science, vol. 65, pp. 495–501, 1982. View at Publisher · View at Google Scholar
  14. O. Rosendo and L. R. Mcdowell, “Liver dry matter and liver lipids in periparturient dairy cows,” Acta Veterinaria Brno, vol. 72, no. 4, pp. 541–546, 2003. View at Google Scholar · View at Scopus
  15. D. Bauchart, D. Durand, D. Gruffat, and Y. Chilliard, “Mechanism of liver steatosis in early lactation cows effects of hepatoprotector agents,” in Proceedings of the Cornell Nutrition Conference for Feed Manufacturers, pp. 27–37, Rochester, NY, USA, 1998.
  16. O. Rosendo, K. Ingvartsen, and T. Larsen, Current On-Farm Monitoring Systems for Ketosis in Dairy Cows, Lambert Academic Publishing, 2011.
  17. Statistical Analysis System Institute (SAS), Software Statistics, Version 8.2, SAS Institute, Cary, NC, USA, 2001.
  18. B. J. Gerloff, T. H. Herdt, and R. S. Emery, “Relationship of hepatic lipidosis to health and performance in dairy cattle,” Journal of the American Veterinary Medical Association, vol. 188, no. 8, pp. 845–850, 1986. View at Google Scholar · View at Scopus
  19. A. Mazur, S. Bazin, and Y. Rayssiguier, “Study of hepatic steatosis at the start of lactation in dairy cows consuming grass silage,” Reproduction Nutrition Developpement, vol. 28, pp. 171–172, 1988. View at Google Scholar · View at Scopus
  20. A. P. Reazai Saber, M. Nouri, A. Shahriari, A. Rasouli, and R. Fatemi Tabatabi, “Hepatic triacylglycerols and plasma non-esterified fatty acids and albumin levels in cross breed cows in Ahvaz City of Khuzestan Province of Iran: an abattoir study,” Pakistan Journal of Biological Sciences, vol. 10, no. 17, pp. 2940–2944, 2007. View at Google Scholar · View at Scopus
  21. D. A. Morrow, “Fat cow syndrome,” Journal of Dairy Science, vol. 59, no. 9, pp. 1625–1629, 1976. View at Google Scholar · View at Scopus
  22. J. B. Andersen, T. Larsen, M. O. Nielsen, and K. L. Ingvartsen, “Effect of energy density in the diet and milking frequency on hepatic long chain fatty acid oxidation in early lactating dairy cows,” Journal of Veterinary Medicine A, vol. 49, no. 4, pp. 177–183, 2002. View at Google Scholar · View at Scopus
  23. R. Grummer, “What is the most critical feeding period: far-off drypre-fresh transition, or post-fresh transition?” in Proceedings of the Four-State Dairy Nutrition and Management Conference, pp. 49–53, Dubuque, La, USA, 2009.
  24. J. R. Roche, N. C. Friggens, J. K. Kay, M. W. Fisher, K. J. Stafford, and D. P. Berry, “Body condition score and its association with dairy cow productivity, health, and welfare,” Journal of Dairy Science, vol. 92, no. 12, pp. 5769–5801, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Rukkwamsuk, T. A. M. Kruip, and T. Wensing, “Relationship between overfeeding and overconditioning in the dry period and the problems of high producing dairy cows during the postparturient period,” Veterinary Quarterly, vol. 21, no. 3, pp. 71–77, 1999. View at Google Scholar · View at Scopus
  26. C. Heuer, Y. H. Schukken, and P. Dobbelaar, “Postpartum body condition score and results from the first test day milk as predictors of disease, fertility, yield, and culling in commercial dairy herds,” Journal of Dairy Science, vol. 82, no. 2, pp. 295–304, 1999. View at Google Scholar · View at Scopus
  27. O. Markusfeld, N. Galon, and E. Ezra, “Body condition score, health, yield and fertility in dairy cows,” Veterinary Record, vol. 141, no. 3, pp. 67–72, 1997. View at Google Scholar · View at Scopus
  28. P. Gillund, O. Reksen, Y. T. Gröhn, and K. Karlberg, “Body condition related to ketosis and reproductive performance in Norwegian dairy cows,” Journal of Dairy Science, vol. 84, no. 6, pp. 1390–1396, 2001. View at Google Scholar · View at Scopus
  29. H. N. Erb and S. W. Martin, “Age, breed and seasonal patterns in the occurrence of ten dairy cow diseases: a case control study,” Canadian Journal of Comparative Medicine, vol. 42, no. 1, pp. 1–9, 1978. View at Google Scholar · View at Scopus
  30. T. R. Smith, A. R. Hippen, D. C. Beitz, and J. W. Young, “Metabolic characteristics of induced ketosis in normal and obese dairy cows,” Journal of Dairy Science, vol. 80, no. 8, pp. 1569–1581, 1997. View at Google Scholar · View at Scopus
  31. A. M. van den Top, M. J. H. Geelen, T. Wensing, G. H. Wentink, A. T. van 'T Klooster, and A. C. Beynen, “Higher postpartum hepatic triacylglycerol concentrations in dairy cows with free rather than restricted access to feed during the dry period are associated with lower activities of hepatic glycerolphosphate acyltransferase,” Journal of Nutrition, vol. 126, no. 1, pp. 76–85, 1996. View at Google Scholar · View at Scopus
  32. I. M. Reid, “Reproductive performance and fatty liver in Guernsey cows,” Animal Reproduction Science, vol. 5, no. 4, pp. 275–279, 1983. View at Google Scholar · View at Scopus
  33. I. M. Reid, M. Sally, M. Dew, and R. A. Collins, “Short note: the relationship between fatty liver and fertility in dairy cows: a farm investigation,” Journal of Agricultural Science, vol. 101, pp. 499–502, 1983. View at Publisher · View at Google Scholar
  34. C. Weber, C. Hametner, A. Tuchscherer et al., “Variation in fat mobilization during early lactation differently affects feed intake, body condition, and lipid and glucose metabolism in high-yielding dairy cows,” Journal of Dairy Science, vol. 96, pp. 165–180, 2013. View at Publisher · View at Google Scholar
  35. K. L. Ingvartsen, R. J. Dewhurst, and N. C. Friggens, “On the relationship between lactational performance and health: is it yield or metabolic imbalance that cause production diseases in dairy cattle? A position paper,” Livestock Production Science, vol. 83, no. 2-3, pp. 277–308, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. S. J. Bertics, R. R. Grummer, C. Cadorniga-Valino, and E. E. Stoddard, “Effect of prepartum dry matter intake on liver triglyceride concentration and early lactation,” Journal of Dairy Science, vol. 75, no. 7, pp. 1914–1922, 1992. View at Google Scholar · View at Scopus
  37. J. K. Drackley, M. J. Richard, D. C. Beitz, and J. W. Young, “Metabolic changes in dairy cows with ketonemia in response to feed restriction and dietary 1,3-butanediol,” Journal of Dairy Science, vol. 75, no. 6, pp. 1622–1634, 1992. View at Google Scholar · View at Scopus
  38. C. E. Coppock, R. W. Everett, R. P. Natzke, and H. R. Ainslie, “Effect of dry period length on Holstein milk production and selected disorders at parturition,” Journal of Dairy Science, vol. 57, pp. 712–718, 1974. View at Publisher · View at Google Scholar
  39. C. Enevoldsen and J. T. Sørensen, “Effects of dry period length on clinical mastitis and other major clinical health disorders,” Journal of Dairy Science, vol. 75, no. 4, pp. 1007–1014, 1992. View at Google Scholar · View at Scopus
  40. A. Pezeshki, J. Mehrzad, G. R. Ghorbani, H. R. Rahmani, R. J. Collier, and C. Burvenich, “Effects of short dry periods on performance and metabolic status in holstein dairy cows,” Journal of Dairy Science, vol. 90, no. 12, pp. 5531–5541, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. R. R. Rastani, R. R. Grummer, S. J. Bertics et al., “Reducing dry period length to simplify feeding transition cows: milk production, energy balance, and metabolic profiles,” Journal of Dairy Science, vol. 88, no. 3, pp. 1004–1014, 2005. View at Google Scholar · View at Scopus
  42. R. D. Watters, J. N. Guenther, A. E. Brickner et al., “Effects of dry period length on milk production and health of dairy cattle,” Journal of Dairy Science, vol. 91, no. 7, pp. 2595–2603, 2008. View at Publisher · View at Google Scholar · View at Scopus