Table of Contents
ISRN Metallurgy
Volume 2013, Article ID 191723, 6 pages
http://dx.doi.org/10.1155/2013/191723
Research Article

Aluminising of Mild Steel Plates

Department of Metallurgical and Materials Engineering, NITK, Surathkal 575025, India

Received 29 November 2012; Accepted 16 January 2013

Academic Editors: Y. Yamabe-Mitarai and T. Yue

Copyright © 2013 Udaya Bhat Kuruveri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Krauss, Properties and Selection: Iron, Steel and High Performance Slloys, vol. 1 of ASM Metals Hand Book, Materials Park, Ohio, USA, 1990.
  2. J. R. Davis, Surface Engineering, vol. 5 of ASM Metals Hand Book, Materials Park, Ohio, USA, 1990.
  3. Z. Ahmad, Principles of Corrosion Engineering and Corrosion Control, Elsevier, London, UK, 2006.
  4. T. Burakowski and T. Weirzchok, Surface engineering of Metals-Principles, Equipments, Technologies, CRC Press, London, UK, 2000.
  5. D. Wang and Z. Shi, “Aluminizing and oxidation treatment of 1Cr18Ni9 stainless steel,” Applied Surface Science, vol. 227, no. 1–4, pp. 255–260, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Murakami, N. Nishida, K. Osamura, and Y. Tomota, “Aluminization of high purity iron by powder liquid coating,” Acta Materialia, vol. 52, no. 5, pp. 1271–1281, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Bahadur and O. N. Mohanty, “Structural studies of hot dip aluminized coatings on mild steel,” Materials Transactions, JIM, vol. 32, no. 11, pp. 1053–1061, 1991. View at Google Scholar · View at Scopus
  8. N.Y. Tang, “Determination of liquid phase boundaries in Zn-Fe-Mx systems,” Journal of Phase Equilibria, vol. 21, no. 1, pp. 167–176, 2000. View at Google Scholar
  9. S. R. Shatynski, J. P. Hirth, and R. A. Rapp, “A theory of multiphase binary diffusion,” Acta Metallurgica, vol. 24, no. 12, pp. 1071–1078, 1976. View at Google Scholar · View at Scopus
  10. V. I. Dybkov, “Reaction diffusion in heterogeneous binary systems—part 1 Growth of the chemical compound layers at the interface between two elementary substances: one compound layer,” Journal of Materials Science, vol. 21, no. 9, pp. 3078–3084, 1986. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Eggeler, W. Auer, and H. Kaesche, “On the influence of silicon on the growth of the alloy layer during hot dip aluminizing,” Journal of Materials Science, vol. 21, no. 9, pp. 3348–3350, 1986. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Heumann and S. Dittrich, “Uber die Kinetic der Reaction von Festemund Flussigem Aluminum mit Eisen,” Zeit fi Afetallkunde, vol. 10, pp. 617–624, 1959. View at Google Scholar
  13. A. Bouayad, C. Gerometta, A. Belkebir, and A. Ambari, “Kinetic interactions between solid iron and molten aluminium,” Materials Science and Engineering A, vol. 363, no. 1-2, pp. 53–61, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Naoi and M. Kajihara, “Growth behavior of Fe2Al5 during reactive diffusion between Fe and Al at solid-state temperatures,” Materials Science and Engineering A, vol. 459, no. 1-2, pp. 375–382, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Springer, A. Kostka, E. J. Payton, D. Raabe, A. Kaysser-Pyzalla, and G. Eggeler, “On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys,” Acta Materialia, vol. 59, no. 4, pp. 1586–1600, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Maki, M. Suehiro, and Y. Ikematsu, “Alloying reaction of aluminized steel sheet,” ISIJ International, vol. 50, no. 8, pp. 1205–1210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Kobayashi and T. Yakou, “Control of intermetallic compound layers at interface between steel and aluminium by diffusion treatment,” Materials Science and Engineering A, vol. 338, pp. 44–53, 2002. View at Google Scholar
  18. S. H. Hwang, J. H. Song, and Y. S. Kim, “Effects of carbon content of carbon steel on its dissolution in to molten aluminium alloy,” Materials Science and Engineering A, vol. 390, pp. 437–443, 2005. View at Google Scholar
  19. M. Gilles, D. Leychkis, Y. Grot, and R. Pankert, “Preparation of steel surfaces for single dip aluminium rich zinc galvanising,” US Patent no. 7160581, January 2007.
  20. G. Neumann and A. D. Le Claire, Diffusion in Solid Metals and Alloys, Numerical Data and Functional Relationships in Science and Technology, vol. 26, Springer, 1990.
  21. M. V. Akdeniz and A. O. Mekhrabov, “The effect of substitutional impurities on the evolution of Fe-Al diffusion layer,” Acta Materialia, vol. 46, no. 4, pp. 1185–1192, 1998. View at Google Scholar · View at Scopus
  22. D. J. Skinner, K. Okazaki, and C. M. Adam, “Physical metallurgy and mechanical properties of Al alloys containing 8 to 12%Fe rapidly solidified powder alumium alloys,” in Rapidly Solidified Powder Aluminum Alloys, M. E. Fine and E. A. Starke, Eds., ASTM STP 890, pp. 211–236, American Society for Testing and Materials, Philedelphia, Pa, USA, 1986. View at Google Scholar
  23. W.-J. Cheng and C.-J. Wang, “Characterisation of intermetallic layer formation in aluminde/nickel duplex coating on mild steel,” Materials Characterisation, vol. 69, pp. 63–70, 2012. View at Google Scholar
  24. K. Bouché, F. Barbier, and A. Coulet, “Intermetallic compound layer growth between solid iron and molten aluminium,” Materials Science and Engineering A, vol. 249, no. 1-2, pp. 167–175, 1998. View at Google Scholar · View at Scopus
  25. Y. J. Li, J. Wang, and X. Holly, “X-ray diffraction and TEM analysis of Fe-Al alloy layer in coating of new hot dip aluminised steel,” Materials Science and Technology, vol. 19, no. 5, pp. 657–660, 2003. View at Publisher · View at Google Scholar · View at Scopus