Table of Contents
ISRN Dentistry
Volume 2013 (2013), Article ID 195678, 9 pages
http://dx.doi.org/10.1155/2013/195678
Clinical Study

The Role of Interleukin-1 Genotype in the Association between Coronary Heart Disease and Periodontitis in a Syrian Population

1Department of Periodontology, Faculty of Dentistry, Damascus University, Al-Mezzeh, Damascus, Syria
2Department of Microbiology and Genetics, Faculty of Medicine, Damascus University, Damascus, Syria

Received 15 February 2013; Accepted 17 March 2013

Academic Editors: D. Drake and J. H. Jeng

Copyright © 2013 Lina Bashour et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. S. Kornman, “Mapping the pathogenesis of periodontitis: a new look,” Journal of Periodontology, vol. 79, no. 8, supplement, pp. 1560–1568, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Hodge and B. Michalowicz, “Genetic predisposition to periodontitis in children and young adults,” Periodontology, vol. 26, no. 1, pp. 113–134, 2001. View at Google Scholar · View at Scopus
  3. H. Okada and S. Murakami, “Cytokine expression in periodontal health and disease,” Critical Reviews in Oral Biology and Medicine, vol. 9, no. 3, pp. 248–266, 1998. View at Google Scholar
  4. C. A. Dinarello, “Interleukin-1, interleukin-1 receptors and interleukin-1 receptor antagonist,” International Reviews of Immunology, vol. 16, no. 5-6, pp. 457–499, 1998. View at Google Scholar · View at Scopus
  5. R. Ross, “Atherosclerosis: an inflammatory disease,” The New England Journal of Medicine, vol. 340, no. 2, pp. 115–126, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. G. C. Armitage, “Periodontal infections and cardiovascular disease: how strong is the association?” Oral Diseases, vol. 6, no. 6, pp. 335–350, 2000. View at Google Scholar · View at Scopus
  7. F. A. Offner, H. Feichtinger, S. Stadlmann et al., “Transforming growth factor-β synthesis by human peritoneal mesothelial cells: induction by interleukin-1,” The American Journal of Pathology, vol. 148, no. 5, pp. 1679–1688, 1996. View at Google Scholar · View at Scopus
  8. B. S. Bochner, F. W. Luscinskas, M. A. Gimbrone et al., “Adhesion of human basophils, eosinophils, and neutrophils to interleukin 1-activated human vascular endothelial cells: contributions of endothelial cell adhesion molecules,” Journal of Experimental Medicine, vol. 173, no. 6, pp. 1553–1556, 1991. View at Google Scholar · View at Scopus
  9. A. J. Szalai, F. W. Van Ginkel, S. A. Dalrymple, R. Murray, J. R. McGhee, and J. E. Volanakis, “Testosterone and IL-6 requirements for human C-reactive protein gene expression in transgenic mice,” Journal of Immunology, vol. 160, no. 11, pp. 5294–5299, 1998. View at Google Scholar · View at Scopus
  10. S. B. Ng, Y. Tan, and G. R. Guy, “Differential induction of the interleukin-6 gene by tumor necrosis factor and interleukin-1,” Journal of Biological Chemistry, vol. 269, no. 29, pp. 19021–19027, 1994. View at Google Scholar · View at Scopus
  11. P. J. Haidaris, “Induction of fibrinogen biosynthesis and secretion from cultured pulmonary epithelial cells,” Blood, vol. 89, no. 3, pp. 873–882, 1997. View at Google Scholar · View at Scopus
  12. L. L. Humphrey, R. Fu, D. I. Buckley, M. Freeman, and M. Helfand, “Periodontal disease and coronary heart disease incidence: a systematic review and meta-analysis,” Journal of General Internal Medicine, vol. 23, no. 12, pp. 2079–2086, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. A. A. Bahekar, S. Singh, S. Saha, J. Molnar, and R. Arora, “The prevalence and incidence of coronary heart disease is significantly increased in periodontitis: a meta-analysis,” The American Heart Journal, vol. 154, no. 5, pp. 830–837, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. W. Al-Tayebb and R. Khattab, Evaluating periodontitis role as a risk factor in atherosclerosis [Ph.D. thesis], Damascus University, Damascus, Syria, 2007.
  15. K. S. Kornman and G. W. Duff, “Candidate genes as potential links between periodontal and cardiovascular diseases,” Annals of periodontology, vol. 6, no. 1, pp. 48–57, 2001. View at Google Scholar · View at Scopus
  16. M. C. Herzberg and M. W. Weyer, “Dental plaque, platelets, and cardiovascular diseases,” Annals of periodontology, vol. 3, no. 1, pp. 151–160, 1998. View at Google Scholar
  17. D. F. Kinane, “Periodontal diseases' contributions to cardiovascular disease: an overview of potential mechanisms,” Annals of periodontology, vol. 3, no. 1, pp. 142–150, 1998. View at Google Scholar · View at Scopus
  18. J. D. Beck, S. Offenbacher, R. Williams, P. Gibbs, and R. Garcia, “Periodontitis: a risk factor for coronary heart disease?” Annals of periodontology, vol. 3, no. 1, pp. 127–141, 1998. View at Google Scholar · View at Scopus
  19. M. J. H. Nicklin, A. Weith, and G. W. Duff, “A physical map of the region encompassing the human interleukin-1α, interleukin-1β, and interleukin-1 receptor antagonist genes,” Genomics, vol. 19, no. 2, pp. 382–384, 1994. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Kenneth Kornman, Allison Crane, Hwa-Ying Wang et al., “The interleukin-1 genotype as a severity factor in adult periodontal disease,” Journal of Clinical Periodontology, vol. 24, no. 1, pp. 72–77, 1997. View at Google Scholar · View at Scopus
  21. M. L. Laine, M. A. Farré, M. A. Garciagonzález et al., “Polymorphisms of the interleukin-1 gene family, oral microbial pathogens, and smoking in adult periodontitis,” Journal of Dental Research, vol. 80, no. 8, pp. 1695–1699, 2001. View at Google Scholar · View at Scopus
  22. A. A. Agrawal, A. Kapley, R. K. Yeltiwar, and H. J. Purohit, “Assessment of single nucleotide polymorphism at IL-1A+4845 and IL-1B+3954 as genetic susceptibility test for chronic periodontitis in Maharashtrian ethnicity,” Journal of Periodontology, vol. 77, no. 9, pp. 1515–1521, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Al-hebshi, A. Shamsan, and M. Al-ak’hali, “Interleukin-1 Two-locus haplotype is strongly associated with severe chronic periodontitis among Yemenis,” Molecular Biology International, vol. 2012, Article ID 231309, 7 pages, 2012. View at Publisher · View at Google Scholar
  24. N. Karimbux, V. Saraiya, S. Elangovan et al., “Interleukin-1 gene polymorphisms and chronic periodontitis in adult Caucasians: a systematic review and meta-analysis,” Journal of Periodontology, vol. 83, no. 11, pp. 1407–1419, 2012. View at Publisher · View at Google Scholar
  25. S. E. Francis, N. J. Camp, R. M. Dewberry et al., “Interleukin-1 receptor antagonist gene polymorphism and coronary artery disease,” Circulation, vol. 99, no. 7, pp. 861–866, 1999. View at Google Scholar · View at Scopus
  26. B. B. Worrall, S. Azhar, P. A. Nyquist, R. H. Ackerman, T. L. Hamm, and T. J. DeGraba, “Interleukin-1 receptor antagonist gene polymorphisms in carotid atherosclerosis,” Stroke, vol. 34, no. 3, pp. 790–793, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. P. S. Olofsson, Y. Sheikine, K. Jatta et al., “A functional interleukin-1 receptor antagonist polymorphism influences atherosclerosis development: the interleukin-1β: interleukin-1 receptor antagonist balance in atherosclerosis,” Circulation Journal, vol. 73, no. 8, pp. 1531–1536, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Vicenová, L. Burýšek, and M. Pospíšek, “Emerging role of interleukin-1 in cardiovascular diseases,” Physiological Research, vol. 58, no. 4, pp. 481–498, 2009. View at Google Scholar
  29. K. S. Kornman, J. Pankow, S. Offenbacher, J. Beck, F. Di Giovine, and G. W. Duff, “Interleukin-1 genotypes and the association between periodontitis and cardiovascular disease,” Journal of Periodontal Research, vol. 34, no. 7, pp. 353–357, 1999. View at Google Scholar · View at Scopus
  30. Y. Momiyama, R. Hirano, H. Taniguchi, H. Nakamura, and F. Ohsuzu, “Effects of interleukin-1 gene polymorphisms on the development of coronary artery disease associated with Chlamydia pneumoniae infection,” Journal of the American College of Cardiology, vol. 38, no. 3, pp. 712–717, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Goteiner, R. Ashmen, N. Lehrman, M. N. Janal, and B. Eskin, “Presence and significance of interleukin-1 polymorphism in patients who present with acute coronary syndrome, angina, and chronic periodontitis: an epidemiologie pilot study,” Journal of Periodontology, vol. 79, no. 1, pp. 138–143, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Geismar, C. Enevold, L. K. Sørensen et al., “Involvement of interleukin-1 genotypes in the association of coronary heart disease with periodontitis,” Journal of Periodontology, vol. 79, no. 12, pp. 2322–2330, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. J. M. Stein, R. Smeets, S. Reichert et al., “The role of the composite interleukin-1 genotype in the association between periodontitis and acute myocardial infarction,” Journal of Periodontology, vol. 80, no. 7, pp. 1095–1102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. S. T. Sherry, M. H. Ward, M. Kholodov et al., “DbSNP: the NCBI database of genetic variation,” Nucleic Acids Research, vol. 29, no. 1, pp. 308–311, 2001. View at Google Scholar · View at Scopus
  35. The American Academy of Periodontology, Proceedings of the World Workshop in Clinical Periodontics, The American Academy of Periodontology, Chicago, Ill, USA, 1999.
  36. P. Newman, F. Carranza, and T. Henri, “Clinical Periodontology,” in Classification of Diseases and Conditions Affecting the Periodontium, Chapter 4, pp. 67–70, 9th edition, 2002. View at Google Scholar
  37. J. Haring and L. Howerton, Dental Radiography: Principle and Techniques, chapter 33, 3rd edition, 2000.
  38. J. K. Tarlow, A. I. F. Blakemore, A. Lennard et al., “Polymorphism in human IL-1 receptor antagonist gene intron 2 is caused by variable numbers of an 86-bp tandem repeat,” Human Genetics, vol. 91, no. 4, pp. 403–404, 1993. View at Google Scholar · View at Scopus
  39. S. Renvert, O. Ohlsson, S. Persson, N. P. Lang, and G. Rutger Persson, “Analysis of periodontal risk profiles in adults with or without a history of myocardial infarction,” Journal of Clinical Periodontology, vol. 31, no. 1, pp. 19–24, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. J. D. Beck, J. R. Elter, G. Heiss, D. Couper, S. M. Mauriello, and S. Offenbacher, “Relationship of periodontal disease to carotid artery intima-media wall thickness: the Atherosclerosis Risk in Communities (ARIC) study,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 11, pp. 1816–1822, 2001. View at Google Scholar · View at Scopus
  41. P. Berger, J. P. McConnell, M. Nunn et al., “C-reactive protein levels are influenced by common IL-1 gene variations,” Cytokine, vol. 17, no. 4, pp. 171–174, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Arman, O. Soylu, A. Yildirim et al., “Interleukin-1 receptor antagonist gene VNTR polymorphism is associated with coronary artery disease,” Arquivos Brasileiros de Cardiologia, vol. 91, no. 5, pp. 268–273, 2008. View at Google Scholar · View at Scopus
  43. B. Vohnout, A. Di Castelnuovo, R. Trotta et al., “Interleukin-1 gene cluster polymorphisms and risk of coronary artery disease,” Haematologica, vol. 88, no. 1, pp. 54–60, 2003. View at Google Scholar · View at Scopus
  44. L. Iacoviello, A. Di Castelnuovo, M. Gattone et al., “Polymorphisms of the interleukin-1β gene affect the risk of myocardial infarction and ischemic stroke at young age and the response of mononuclear cells to stimulation in vitro,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 1, pp. 222–227, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Pankow, J. Beck, S. Offenbacher, D. Catallier, and M. Bray, “Association of interleukin-1 gene variants and carotid arterial wall thickness: the ARIC study,” Atherosclerosis, supplement, pp. 1124–1144, 1999. View at Google Scholar
  46. S. S. Witkin, S. Gerber, and W. J. Ledger, “Influence of interleukin-1 receptor antagonist gene polymorphism on disease,” Clinical Infectious Diseases, vol. 34, no. 2, pp. 204–209, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. P. N. Papapanou, A. M. Neiderud, J. Sandros, and G. Dahlén, “Interleukin-1 gene polymorphism and periodontal status: a case-control study,” Journal of Clinical Periodontology, vol. 28, no. 5, pp. 389–396, 2001. View at Google Scholar · View at Scopus
  48. P. S. G. Prakash and D. J. Victor, “Interleukin-1b gene polymorphism and its association with chronic periodontitis in south Indian population,” International Journal of Genetics and Molecular Biology, vol. 2, no. 8, pp. 179–183, 2010. View at Google Scholar · View at Scopus
  49. A. Droździk, M. Kurzawski, K. Safronow, and J. Banach, “Polymorphism in interleukin-1beta gene and the risk of periodontitis in a Polish population,” Advances in Medical Sciences, vol. 51, supplement 1, pp. 13–17, 2006. View at Google Scholar · View at Scopus
  50. S. B. Ferreira, A. P. F. Trombone, C. E. Repeke et al., “An interleukin-1β (IL-1β) single-nucleotide polymorphism at position 3954 and red complex periodontopathogens independently and additively modulate the levels of IL-1β in diseased periodontal tissues,” Infection and Immunity, vol. 76, no. 8, pp. 3725–3734, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. G. Kaarthikeyan, N. D. Jayakumar, O. Padmalatha, V. Sheeja, M. Sankari, and B. Anandan, “Analysis of the association between interleukin -1β (+3954) gene polymorphism and chronic periodontitis in a sample of the south Indian population,” Indian Journal of Dental Research, vol. 20, no. 1, pp. 37–40, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. F. Pociot, J. Molvig, L. Wogensen, H. Worsaae, and J. Nerup, “A TaqI polymorphism in the human interleukin-1β (IL-1β) gene correlates with IL-1β secretion in vitro,” European Journal of Clinical Investigation, vol. 22, no. 6, pp. 396–402, 1992. View at Google Scholar · View at Scopus
  53. K. Kornman, “Interleukin 1 haplotypes and composite genotypes are associated with increased inflammatory mediators and cardiovascular events,” in Proceedings of the 4th Conference on Cytokines and Inflammation, January 2006.
  54. S. Shiroddria, J. Smith, I. J. McKay, C. N. Kennett, and F. J. Hughes, “Polymorphisms in the IL-1A gene are correlated with levels of interleukin-1α protein in gingival crevicular fluid of teeth with severe periodontal disease,” Journal of Dental Research, vol. 79, no. 11, pp. 1864–1869, 2000. View at Google Scholar · View at Scopus
  55. G. C. Armitage, Y. Wu, H. Y. Wang, J. Sorrell, F. S. Di Giovine, and G. W. Duff, “Low prevalence of a periodontitis-associated interleukin-1 composite genotype in individuals of Chinese heritage,” Journal of Periodontology, vol. 71, no. 2, pp. 164–171, 2000. View at Google Scholar · View at Scopus