Table of Contents
ISRN Biotechnology
Volume 2013, Article ID 197201, 7 pages
http://dx.doi.org/10.5402/2013/197201
Research Article

Sequentially Integrated Optimization of the Conditions to Obtain a High-Protein and Low-Antinutritional Factors Protein Isolate from Edible Jatropha curcas Seed Cake

Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, 11340 México, DF, Mexico

Received 27 November 2012; Accepted 8 January 2013

Academic Editors: Y. H. Cheong, K. R. Davis, and S. Sanyal

Copyright © 2013 Liliana León-López et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Saetae, T. Kleekayai, W. Suntornsuk, and V. Jayasena, “Functional properties of protein isolate obtained from physic nut (Jatropha curcas L.) seed cake,” Food Science and Biotechnology, vol. 20, no. 1, pp. 29–37, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Saetae and W. Suntornsuk, “Toxic compound, anti-nutritional factors and functional properties of protein isolated from detoxified Jatropha curcas seed cake,” International Journal of Molecular Sciences, vol. 12, no. 1, pp. 66–77, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. H. P. S. Makkar, A. O. Aderibigbe, and K. Becker, “Comparative evaluation of non-toxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors,” Food Chemistry, vol. 62, no. 2, pp. 207–215, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Martínez-Herrera, P. Siddhuraju, G. Francis, G. Dávila-Ortíz, and K. Becker, “Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico,” Food Chemistry, vol. 96, no. 1, pp. 80–89, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. H. P. S. Makkar and K. Becker, “Jatropha curcas toxicity: identification of toxic principles,” in Proceedings of the 5th International Symposium on Poisonous Plants, San Angelo, Tex, USA, 1997.
  6. G. Goel, H. P. S. Makkar, G. Francis, and K. Becker, “Phorbol esters: structure, biological activity, and toxicity in animals,” International Journal of Toxicology, vol. 26, no. 4, pp. 279–288, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Schmook and L. Serralta-Peraza, “J. curcas: distribution and uses in the Yucatan Peninsula of Mexico,” Jatropha 97, Managua, Nicaragua, 1997.
  8. H. P. S. Makkar and K. Becker, “Nutritional studies on rats and fish (carp Cyprinus carpio) fed diets containing unheated and heated Jatropha curcas meal of a non-toxic provenance,” Plant Foods for Human Nutrition, vol. 53, no. 3, pp. 183–192, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Vani and J. F. Zayas, “Wheat germ protein flour solubility and water retention,” Journal of Food Science, vol. 60, pp. 845–848, 1995. View at Google Scholar
  10. B. Salcedo-Chávez, J. A. Osuna-Castro, F. Guevara-Lara, J. Domínguez-Domínguez, and O. Paredes-López, “Optimization of the isoelectric precipitation method to obtain protein isolates from amaranth (Amaranthus cruentus) seeds,” Journal of Agricultural and Food Chemistry, vol. 50, no. 22, pp. 6515–6520, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Acherjee, A. S. Kuar, S. Mitra, and D. Misra, “A sequentally integrated multi-criteria optimization approach applied to laser transmission weld quality enhancement-a case study,” International Journal of Advanced Manufacturing Technology, 2012. View at Publisher · View at Google Scholar
  12. S. Raissi, “Developing new processes and optimizing performance using response surface methodology,” World Academy of Science, Engineering and Technology, vol. 25, pp. 1039–1042, 2009. View at Google Scholar
  13. V. Parekh and A. B. Pandit, “Optimization of fermentative production of sophorolipid biosurfactant by Starmerella bombicola NRRL Y-17069 using response surface methodology,” International Journal of Pharmacy and Biological Sciences, vol. 1, pp. 103–116, 2011. View at Google Scholar
  14. A. Filotheou, K. Nanou, E. Papaioannou, T. Roukas, P. Kotzekidou, and M. Liakopoulou-Kyriakides, “Application of response surface methodology to improve carotene production from synthetic medium by Blakeslea trispora in submerged fermentation,” Food and Bioprocess Technology, vol. 5, pp. 1189–1196, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Nde Bup, C. F. Abi, D. Tenin, C. Kapseu, and C. Tchiegang, “Optimisation of the cooking process of sheanut kernels (Vitellaria paradoxa Gaertn.) using the Doehlert experimental design,” Food and Bioprocess Technology, vol. 5, pp. 108–117, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Dias Ribeiro, D. Weingart Barreto, and M. A. Zarur Coelho, “Enzyme-enhanced extraction of phenolic compounds and proteins from flaxseed meal,” ISRN Biotechnology, vol. 2013, Article ID 521067, 6 pages, 2013. View at Publisher · View at Google Scholar
  17. S. R. Patel and Z. V. P. Murthy, “Optimization of process parameters by Taguchi method in the recovery of lactose from whey using sonocrystallization,” Crystal Research and Technology, vol. 45, no. 7, pp. 747–752, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Inei-Shizukawa, H. A. Velasco-Bedrán, G. F. Gutiérrez-López, and H. Hernández-Sánchez, “Statistical approach to optimization of ethanol fermentation by Saccharomyces cerevisiae in the presence of Valfor 100 zeolite NAA,” Revista Mexicana de Ingeniería Química, vol. 8, pp. 265–270, 2009. View at Google Scholar
  19. A. Moslemi and I. G. Khondabi, “Using experimental designs in order to analyze the affect of effective factors on rice seeds weight,” Australian Journal of Basic and Applied Sciences, vol. 5, no. 5, pp. 334–340, 2011. View at Google Scholar · View at Scopus
  20. AOAC, Official Methods of Analysis of the Association of Official Analytical Chemists, AOAC Int., Washington, DC, USA, 16th edition, 1995.
  21. H. P. S. Makkar, G. Francis, and K. Becker, “Protein concentrate from Jatropha curcas screw-pressed seed cake and toxic and antinutritional factors in protein concentrate,” Journal of the Science of Food and Agriculture, vol. 88, no. 9, pp. 1542–1548, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Namuli, N. Abdullah, C. C. Sieo, S. W. Zuhainis, and E. Oskoueian, “Phytochemical compounds and antibacterial activity of Jatropha curcas Linn. extracts,” Journal of Medicinal Plants Research, vol. 5, no. 16, pp. 3982–3990, 2011. View at Google Scholar
  23. I. A. Vaintraub and N. A. Lapteva, “Colorimetric determination of phytate in unpurified extracts of seeds and the products of their processing,” Analytical Biochemistry, vol. 175, no. 1, pp. 227–230, 1988. View at Google Scholar · View at Scopus
  24. S. Hiai, H. Oura, and T. Nakajima, “Color reaction of some sapogenins and saponins with vanillin and sulfuric acid,” Planta Medica, vol. 29, no. 2, pp. 116–122, 1976. View at Google Scholar · View at Scopus
  25. X. Cao, C. Li, H. Wen, and Z. Gu, “Extraction technique and characteristics of soluble protein in germinated brown rice,” International Journal of Food Properties, vol. 13, no. 4, pp. 810–820, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. G. I. O. Badifu and P. I. Akubor, “Influence of pH and sodium chloride on selected functional and physical properties of African breadfruit (Treculia africana Decne) kernel flour,” Plant Foods for Human Nutrition, vol. 56, no. 2, pp. 105–115, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. L. A. Usman, O. M. Ameen, S. A. Ibiyemi, and N. O. Muhammad, “The extraction of proteins from the neem seed (Indica azadirachta A. Juss),” African Journal of Biotechnology, vol. 4, no. 10, pp. 1142–1144, 2005. View at Google Scholar · View at Scopus
  28. A. Moure, M. Rua, J. Sineiro, and H. Dominguez, “Aqueous extraction and membrane isolation of protein from defatted Gevuina avellana,” Journal of Food Science, vol. 67, no. 2, pp. 688–696, 2002. View at Google Scholar · View at Scopus
  29. R. M. Cigala, F. Crea, G. Lando, D. Milea, and S. Sammartano, “Solubility and acid-base properties of concentrated phytate in self-medium and in NaClaq at T=298.15 K,” Journal of Chemical Thermodynamics, vol. 42, no. 11, pp. 1393–1399, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. S. A. Atamanova, T. A. Brezhneva, A. I. Slivkin, V. A. Nikolaevskii, V. F. Selemenev, and N. V. Mironenko, “Isolation of saponins from table beetroot and primary evaluation of their pharmacological activity,” Pharmaceutical Chemistry Journal, vol. 39, no. 12, pp. 650–652, 2005. View at Publisher · View at Google Scholar · View at Scopus