Table of Contents
ISRN Software Engineering
Volume 2013 (2013), Article ID 198937, 18 pages
http://dx.doi.org/10.1155/2013/198937
Research Article

An Empirical Study of the Effect of Power Law Distribution on the Interpretation of OO Metrics

Software Engineering Department, Jordan University of Science and Technology, Irbid 22110, Jordan

Received 21 November 2012; Accepted 20 December 2012

Academic Editors: P. Ciancarini, J. A. Holgado-Terriza, and Z. Shen

Copyright © 2013 Raed Shatnawi and Qutaibah Althebyan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-oriented design metrics as quality indicators,” IEEE Transactions on Software Engineering, vol. 22, no. 10, pp. 751–761, 1996. View at Google Scholar · View at Scopus
  2. T. Gyimóthy, R. Ferenc, and I. Siket, “Empirical validation of object-oriented metrics on open source software for fault prediction,” IEEE Transactions on Software Engineering, vol. 31, no. 10, pp. 897–910, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Shatnawi and W. Li, “The effectiveness of software metrics in identifying error-prone classes in post-release software evolution process,” The Journal of Systems and Software, vol. 81, no. 11, pp. 1868–1882, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. S. R. Chidamber and C. F. Kemerer, “Metrics suite for object oriented design,” IEEE Transactions on Software Engineering, vol. 20, no. 6, pp. 476–493, 1994. View at Publisher · View at Google Scholar · View at Scopus
  5. R. M. Szabo and T. M. Khoshgoftaar, “Assessment of software quality in a C++ environment,” in Proceedings of the 6th International Symposium on Software Reliability Engineering, pp. 240–249, October 1995. View at Scopus
  6. L. C. Briand, J. W. Daly, and J. Wüst, “A unified framework for cohesion measurement in object-oriented systems,” Empirical Software Engineering, vol. 3, no. 1, pp. 65–117, 1998. View at Google Scholar · View at Scopus
  7. L. C. Briand and J. W. Daly, “A unified framework for coupling measurement in object-oriented systems,” IEEE Transactions on Software Engineering, vol. 25, no. 1, pp. 91–121, 1999. View at Google Scholar · View at Scopus
  8. L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter, “Exploring the relationships between design measures and software quality in object-oriented systems,” The Journal of Systems and Software, vol. 51, no. 3, pp. 245–273, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Cartwright and M. Shepperd, “An empirical investigation of an object-oriented software system,” IEEE Transactions on Software Engineering, vol. 26, no. 8, pp. 786–796, 2000. View at Google Scholar · View at Scopus
  10. N. E. Fenton and N. Ohlsson, “Quantitative analysis of faults and failures in a complex software system,” IEEE Transactions on Software Engineering, vol. 26, no. 8, pp. 797–814, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai, “The confounding effect of class size on the validity of object-oriented metrics,” IEEE Transactions on Software Engineering, vol. 27, no. 7, pp. 630–648, 2001. View at Google Scholar · View at Scopus
  12. R. Subramanyam and M. S. Krishnan, “Empirical analysis of CK metrics for object-oriented design complexity: implications for software defects,” IEEE Transactions on Software Engineering, vol. 29, no. 4, pp. 297–310, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Marinescu, “Measurement and quality in object-oriented design,” in Proceedimgs of the 21st IEEE International Conference on Software Maintenance (ICSM '05), pp. 701–704, September 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. R. C. Gronback, “Software remodeling: improving design and implementation quality, using audits, metrics and refactoring in Borland Together Control Center,” A Borland White Paper, 2003. View at Google Scholar
  15. W. Li and R. Shatnawi, “An empirical study of the bad smells and class error probability in the post-release object-oriented system evolution,” The Journal of Systems and Software, vol. 80, no. 7, pp. 1120–1128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Rosenberg, “Applying and interpreting object oriented metrics,” Software Assurance Technology Center at NASA Goddard Space Flight Center Report, 1998. View at Google Scholar
  17. L. Rosenberg, “Metrics for object oriented environment,” in Proceedings of the EFAITP/AIE 3rd Annual Software Metrics Conference, December 1997.
  18. K. Erni and C. Lewerentz, “Applying design-metrics to object-oriented frameworks,” in Proceedings of the 3rd International Software Metrics Symposium, pp. 64–74, March 1996. View at Scopus
  19. R. Shatnawi, The validation and threshold values of object-oriented metrics [Ph.D. dissertation], University of Alabama in Huntsville, Huntsville, Ala, USA, 2006.
  20. P. Louridas, D. Spinellis, and V. Vlachos, “Power laws in software,” ACM Transactions on Software Engineering and Methodology, vol. 18, no. 1, pp. 1–26, 2008. View at Google Scholar · View at Scopus
  21. R. Wheeldon and S. Counsell, “Power law distributions in class relationships,” in Proceedings of the 3rd IEEE International Conference in Source Code Analysis and Manipulation, pp. 45–54, September 2003.
  22. M. E. J. Newman, “Power laws, Pareto distributions and Zipf's law,” Contemporary Physics, vol. 46, no. 5, pp. 323–351, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Valverde, R. F. Cancho, and R. V. Sol, “Scale-free networks from optimal design,” Europhysics Letter, vol. 60, no. 4, pp. 512–518, 2002. View at Google Scholar
  24. S. Valverde and R. V. Sole, “Hierarchical small worlds in software architecture,” Dynamics of Continuous Discrete and Impulsive Systems B, vol. 14, pp. 1–11, 2007. View at Google Scholar
  25. G. Concas, M. Marchesi, S. Pinna, and N. Serra, “Power-laws in a large object-oriented software system,” IEEE Transactions on Software Engineering, vol. 33, no. 10, pp. 687–708, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Baxter, M. Frean, J. Noble et al., “Understanding the shape of Java software,” in Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications, pp. 397–412, New York, NY, USA, 2006.
  27. L. Hatton, “Power-law distributions of component size in general software systems,” IEEE Transactions on Software Engineering, vol. 35, no. 4, pp. 566–572, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Andersson and P. Runeson, “A replicated quantitative analysis of fault distributions in complex software systems,” IEEE Transactions on Software Engineering, vol. 33, no. 5, pp. 273–286, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Mubarak, S. Counsell, and R. Hierons, “Does an 80:20 rule apply to Java coupling?” in Proceedings of the International Conference on Evaluation and Assessment in Software Engineering, Keele, UK, 2009.
  30. M. Kaaniche and K. Kanoun, “Reliability of a commercial telecommunications system,” in Proceedings of the 7th International Symposium on Software Reliability Engineering (ISSRE '96), pp. 207–212, November 1996. View at Scopus
  31. G. Denaro and M. Pezze, “An empirical evaluation of fault-proneness models,” in Proceedings of the 24th International Conference on Software Engineering (ICSE '02), pp. 241–251, 2002.
  32. J. C. Munson and T. M. Khoshgoftaar, “The detection of fault-prone programs,” IEEE Transactions on Software Engineering, vol. 18, no. 5, pp. 423–433, 1992. View at Publisher · View at Google Scholar · View at Scopus
  33. M. L. Goldstein, S. A. Morris, and G. G. Yen, “Problems with fitting to the power-law distribution,” European Physical Journal B, vol. 41, no. 2, pp. 255–258, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Mitzenmacher, “A brief history of generative models for power law and lognormal distributions,” Internet Mathematics, vol. 1, no. 2, pp. 226–251, 2004. View at Google Scholar
  35. L. Etzkorn, C. Davis, and W. Li, “A practical look at the lack of cohesion in methods metric,” Journal of Object-Oriented Programming, vol. 11, no. 5, pp. 27–34, 1998. View at Google Scholar · View at Scopus
  36. Y. Zhou and H. Leung, “Empirical analysis of object-oriented design metrics for predicting high and low severity faults,” IEEE Transactions on Software Engineering, vol. 32, no. 10, pp. 771–784, 2006. View at Google Scholar · View at Scopus
  37. A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law distributions in empirical data,” SIAM Review, vol. 51, no. 4, pp. 661–703, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, Cambridge Press, Cambridge, UK, 2nd edition, 1992.
  39. H. M. Park, “Univariate analysis and normality test using SAS, stata, and SPSS,” Working Paper, The University Information Technology Services (UITS) Center for Statistical and Mathematical Computing, Indiana University, 2008. View at Google Scholar
  40. T. Tamai and T. Nakatani, “Analysis of software evolution processes using statistical distribution models,” in Proceedings of the 5th International Workshop on Principles of Software Evolution (IWPSE '02), pp. 120–123, May 2002. View at Scopus
  41. “NIST/SEMATECH e-handbook of statistical methods,” 2009, http://www.itl.nist.gov/div898/handbook/eda/section3/histogr6.htm.
  42. P. T. von Hippel, “Mean, median, and skew: correcting a textbook rule,” Journal of Statistics Education, vol. 13, no. 2, 2005, http://www.amstat.org/publications/jse/v13n2/vonhippel.html. View at Google Scholar
  43. R. Shatnawi, “A quantitative investigation of the acceptable risk levels of object-oriented metrics in open-source systems,” IEEE Transactions on Software Engineering, vol. 36, no. 2, pp. 216–225, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Shatnawi, W. Li, J. Swain, and T. Newman, “Finding software metrics threshold values using ROC curves,” Journal of Software Maintenance and Evolution, vol. 22, no. 1, pp. 1–16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice, Springer, Berlin, Germany, 2006.
  46. L. A. Adamic, “Zipf, power laws, and Pareto—a ranking tutorial,” Tech. Rep. 94304, Information Dynamics Lab, HP Labs, HP Labs, Palo Alto, Calif, USA, 2000. View at Google Scholar
  47. V. Pareto, “The new theories of economics,” Journal of Political Economy, vol. 5, no. 4, pp. 485–502, 1897. View at Google Scholar
  48. L. Guo, Y. Ma, B. Cukic, and H. Singh, “Robust prediction of fault-proneness by random forests,” in Proceedings of the 15th International Symposium on Software Reliability Engineering (ISSRE '04), pp. 417–428, November 2004. View at Scopus
  49. L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. M. M. Lehman, “Laws of software evolution revisited,” in Proceedings of the European Workshop on Software Process Technology, pp. 108–124, October 1996.