Table of Contents
ISRN Computational Biology
Volume 2013, Article ID 230571, 11 pages
http://dx.doi.org/10.1155/2013/230571
Research Article

All Phase Resetting Curves Are Bimodal, but Some Are More Bimodal Than Others

Department of Physics and Astronomy, College of Charleston, 66 George Street, Charleston, SC 29424, USA

Received 22 August 2013; Accepted 19 November 2013

Academic Editors: P. Durrens and A. Fedorov

Copyright © 2013 Sorinel A. Oprisan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Hodgkin, “The local electric changes associated with repetitive action in a non-medullated axon,” The Journal of Physiology, vol. 107, pp. 165–181, 1948. View at Google Scholar
  2. E. M. Izhikevich, Systems in Neuroscience: The Geometry of Excitability and Bursting, The MIT Press, 2007.
  3. R. FitzHugh, “Mathematical models of threshold phenomena in the nerve membrane,” The Bulletin of Mathematical Biophysics, vol. 17, no. 4, pp. 257–278, 1955. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Rinzel and G. Ermentrout, Methods in Neuronal Modeling, Chapter Analysis of Neural Excitability and Oscillations, The MIT Press, Cambridge, UK, 1989.
  5. S. A. Prescott, Y. De Koninck, and T. J. Sejnowski, “Biophysical basis for three distinct dynamical mechanisms of action potential initiation,” PLoS Computational Biology, vol. 4, no. 10, Article ID e1000198, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. R. M. Smeal, G. B. Ermentrout, and J. A. White, “Phase-response curves and synchronized neural networks,” Philosophical Transactions of the Royal Society B, vol. 365, no. 1551, pp. 2407–2422, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. R. FitzHugh, “Impulses and physiological states in theoretical models of nerve membrane,” Biophysical Journal, vol. 1, pp. 445–466, 1961. View at Google Scholar
  8. C. Morris and H. Lecar, “Voltage oscillations in the barnacle giant muscle fiber,” Biophysical Journal, vol. 35, no. 1, pp. 193–213, 1981. View at Google Scholar · View at Scopus
  9. F. C. Hoppensteadt and E. M. Izhikevich, Weakly Connected Neural Networks, Springer, New York, NY, USA, 1997.
  10. S. Oprisan, A Geometric Approach to Phase Resetting Estimation Based on Mapping Temporal to Geometric Phase, vol. 6 of Springer Series in Computational Neuroscience, 2012.
  11. R. Llinás and H. Jahnsen, “Electrophysiology of mammalian thalamic neurones in vitro,” Nature, vol. 297, no. 5865, pp. 406–408, 1982. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Sarnthein and D. Jeanmonod, “High thalamocortical theta coherence in patients with Parkinson's disease,” Journal of Neuroscience, vol. 27, no. 1, pp. 124–131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Schnitzler and J. Gross, “Normal and pathological oscillatory communication in the brain,” Nature Reviews Neuroscience, vol. 6, no. 4, pp. 285–296, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. P. A. Tass, Phase Resetting in Medicine and Biology-Stochastic Modelling and Data Analysis, Springer, 1999.
  15. P. A. Tass, “Desynchronizing double-pulse phase resetting and application to deep brain stimulation,” Biological Cybernetics, vol. 85, no. 5, pp. 343–354, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. P. A. Tass, “Desynchronization of brain rhythms with soft phase-resetting techniques,” Biological Cybernetics, vol. 87, no. 2, pp. 102–115, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. A. L. Benabid, P. Pollak, C. Gervason et al., “Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus,” The Lancet, vol. 337, no. 8738, pp. 403–406, 1991. View at Publisher · View at Google Scholar · View at Scopus
  18. P. A. Tass, “A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations,” Biological Cybernetics, vol. 89, no. 2, pp. 81–88, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Engel, T. Pedley, and J. Aicardi, “Epilepsy: a comprehensive textbook,” in Epilepsy: A Comprehensive Textbook, vol. 1, Wolters Kluwer Health/Lippincott Williams & Wilkins, 2008. View at Google Scholar
  20. O. V. Popovych, C. Hauptmann, and P. A. Tass, “Control of neuronal synchrony by nonlinear delayed feedback,” Biological Cybernetics, vol. 95, no. 1, pp. 69–85, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. M. G. Rosenblum and A. S. Pikovsky, “Controlling synchronization in an ensemble of globally coupled oscillators,” Physical Review Letters, vol. 92, no. 11, Article ID 114102, 4 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Ermentrout, M. Pascal, and B. Gutkin, “The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators,” Neural Computation, vol. 13, no. 6, pp. 1285–1310, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. B. S. Gutkin, G. B. Ermentrout, and A. D. Reyes, “Phase-response curves give the responses of neurons to transient inputs,” Journal of Neurophysiology, vol. 94, no. 2, pp. 1623–1635, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Hansel, G. Mato, and C. Meunier, “Synchrony in excitatory neural networks,” Neural computation, vol. 7, no. 2, pp. 307–337, 1995. View at Google Scholar · View at Scopus
  25. T. Tateno and H. P. C. Robinson, “Phase resetting curves and oscillatory stability in interneurons of rat somatosensory cortex,” Biophysical Journal, vol. 92, no. 2, pp. 683–695, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Brown, J. Moehlis, and P. Holmes, “On the phase reduction and response dynamics of neural oscillator populations,” Neural Computation, vol. 16, no. 4, pp. 673–715, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Ermentrout, “Type I membranes, phase resetting curves, and synchrony,” Neural Computation, vol. 8, no. 5, pp. 979–1001, 1996. View at Google Scholar · View at Scopus
  28. G. B. Ermentrout, L. Glass, and B. E. Oldeman, “The shape of phase-resetting curves in oscillators with a saddle node on an invariant circle bifurcation,” Neural Computation, vol. 24, pp. 3111–3125, 2012. View at Google Scholar
  29. S. A. Oprisan, “Local linear approximation of the jacobian matrix better captures phase resetting of neural limit cycle oscillators,” Neural Computation, vol. 26, no. 1, pp. 1–26, 2014. View at Google Scholar
  30. S. A. Oprisan and C. C. Canavier, “The influence of limit cycle topology on the phase resetting curve,” Neural Computation, vol. 14, no. 5, pp. 1027–1057, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. S. A. Oprisan, A. A. Prinz, and C. C. Canavier, “Phase resetting and phase locking in hybrid circuits of one model and one biological neuron,” Biophysical Journal, vol. 87, no. 4, pp. 2283–2298, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. E. M. Izhikevich, “Neural excitability, spiking and bursting,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 10, no. 6, pp. 1171–1266, 2000. View at Google Scholar · View at Scopus
  33. H. Lecar and R. Nossal, “Theory of threshold fluctuations in nerves. II. Analysis of various sources of membrane noise,” Biophysical Journal, vol. 11, no. 12, pp. 1068–1084, 1971. View at Google Scholar · View at Scopus
  34. F. Ali and M. Menzinger, “On the local stability of limit cycles,” Chaos, vol. 9, no. 2, pp. S1054–S1500, 1999. View at Google Scholar
  35. R. Bellman, introduction to Matrix Analysis. Society for industrial and Applied Mathematics, University City Service Center, Philadelphia, Pa, USA, 1997.
  36. T. S. Shores, Applied Linear Algebra and Matrix Analysis, Springer, 2007.
  37. B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students, vol. 14, Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA, 2002.
  38. J. Guckenheimer and I. S. Labouriau, “Bifurcation of the Hodgkin and Huxley equations: a new twist,” Bulletin of Mathematical Biology, vol. 55, no. 5, pp. 937–952, 1993. View at Publisher · View at Google Scholar · View at Scopus
  39. F. Takens, “Forced oscillations and bifurcations,” Communications of the Mathematical Institute, Rijksuniversiteit Utrecht, vol. 3, pp. 1–59, 1974. View at Google Scholar
  40. E. M. Izhikevich, “Subcritical elliptic bursting of Bautin type,” SIAM Journal on Applied Mathematics, vol. 60, no. 2, pp. 503–535, 2000. View at Google Scholar · View at Scopus
  41. P. Århem and C. Blomberg, “Ion channel density and threshold dynamics of repetitive firing in a cortical neuron model,” BioSystems, vol. 89, no. 1–3, pp. 117–125, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Århem, G. Klement, and C. Blomberg, “Channel density regulation of firing patterns in a cortical neuron model,” Biophysical Journal, vol. 90, no. 12, pp. 4392–4404, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Zeberg, C. Blomberg, and P. Århem, “Ion channel density regulates switches between regular and fast spiking in soma but not in axons,” PLoS Computational Biology, vol. 6, no. 4, Article ID e1000753, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. A. T. Winfree, The Geometry of Biological Time, Springer, 2001.
  45. P. A. Tass, “Stochastic phase resetting: a theory for deep brain stimulation,” Progress of Theoretical Physics Supplement, no. 139, pp. 301–313, 2000. View at Google Scholar · View at Scopus
  46. J. Beshel, N. Kopell, and L. M. Kay, “Olfactory bulb gamma oscillations are enhanced with task demands,” Journal of Neuroscience, vol. 27, no. 31, pp. 8358–8365, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. L. M. Kay and P. Lazzara, “How global are olfactory bulb oscillations?” Journal of Neurophysiology, vol. 104, no. 3, pp. 1768–1773, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Martin, D. Houitte, M. Guillermier, F. Petit, G. Bonvento, and H. Gurden, “Alteration of sensory-evoked metabolic and oscillatory activities in the olfactory bulb of glast-deficient mice,” Frontiers in Neural Circuits, vol. 6, article 1, 2012. View at Google Scholar · View at Scopus
  49. S. W. Hughes, M. L. Lorincz, H. R. Parri, and V. Crunelli, “Infraslow (< 0.1Hz) oscillations in thalamic relay nuclei. Basic mechanisms and significance to health and disease states,” Progress in Brain Research, vol. 193, pp. 145–162, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Steriade, E. G. Jones, and R. R. Llinas, Thalamic Oscillations and Signaling, John Wiley and Sons, Oxford, UK, 1990.
  51. G. Buzsáki, “Theta oscillations in the hippocampus,” Neuron, vol. 33, no. 3, pp. 325–340, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Pignatelli, A. Beyeler, and X. Leinekugel, “Neural circuits underlying the generation of theta oscillations,” Journal of Physiology Paris, vol. 106, no. 3-4, pp. 81–92, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. G. A. Worrell, L. Parish, S. D. Cranstoun, R. Jonas, G. Baltuch, and B. Litt, “High-frequency oscillations and seizure generation in neocortical epilepsy,” Brain, vol. 127, no. 7, pp. 1496–1506, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. S. A. Oprisan, “Stability of synchronous oscillations in a periodic network,” International Journal of Neuroscience, vol. 119, no. 4, pp. 482–491, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. S. A. Oprisan, “Existence and stability criteria for phase-locked modes in ring neural networks based on the spike time resetting curve method,” Journal of Theoretical Biology, vol. 262, no. 2, pp. 232–244, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. S. A. Oprisan, “Existence and stability criteria for phase-locked modes in ring neural networks based on the spike time resetting curve method,” Journal of Theoretical Biology, vol. 262, no. 2, pp. 232–244, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Bartos, I. Vida, and P. Jonas, “Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks,” Nature Reviews Neuroscience, vol. 8, no. 1, pp. 45–56, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. G. Buzsáki and A. Draguhn, “Neuronal olscillations in cortical networks,” Science, vol. 304, no. 5679, pp. 1926–1929, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. C. M. Gray and W. Singer, “Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 5, pp. 1698–1702, 1989. View at Google Scholar · View at Scopus
  60. U. Ribary, A. A. Ioannides, K. D. Singh et al., “Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 24, pp. 11037–11041, 1991. View at Google Scholar · View at Scopus
  61. G. Buzsaki and J. J. Chrobak, “Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks,” Current Opinion in Neurobiology, vol. 5, no. 4, pp. 504–510, 1995. View at Publisher · View at Google Scholar · View at Scopus
  62. J. J. Hopfield, “Pattern recognition computation using action potential timing for stimulus representation,” Nature, vol. 376, no. 6535, pp. 33–36, 1995. View at Google Scholar · View at Scopus
  63. C. E. Schroeder and P. Lakatos, “Low-frequency neuronal oscillations as instruments of sensory selection,” Trends in Neurosciences, vol. 32, no. 1, pp. 9–18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. J. K. Kleen, E. X. Wu, G. L. Holmes, R. C. Scott, and P.-P. Lenck-Santini, “Enhanced oscillatory activity in the hippocampal-prefrontal network is related to short-term memory function after early-life seizures,” Journal of Neuroscience, vol. 31, no. 43, pp. 15397–15406, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. J. E. Lisman, “Relating hippocampal circuitry to function: recall of memory sequences by reciprocal dentate-CA3 interactions,” Neuron, vol. 22, no. 2, pp. 233–242, 1999. View at Google Scholar · View at Scopus
  66. J. E. Lisman and M. A. P. Idiart, “Storage of 7 ± 2 short-term memories in oscillatory subcycles,” Science, vol. 267, no. 5203, pp. 1512–1515, 1995. View at Google Scholar · View at Scopus
  67. D. A. Lewis, T. Hashimoto, and D. W. Volk, “Cortical inhibitory neurons and schizophrenia,” Nature Reviews Neuroscience, vol. 6, no. 4, pp. 312–324, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. K. M. Spencer, P. G. Nestor, M. A. Niznikiewicz, D. F. Salisbury, M. E. Shenton, and R. W. McCarley, “Abnormal neural synchrony in schizophrenia,” Journal of Neuroscience, vol. 23, no. 19, pp. 7407–7411, 2003. View at Google Scholar · View at Scopus