Table of Contents
ISRN Electrochemistry
Volume 2013 (2013), Article ID 240571, 10 pages
http://dx.doi.org/10.1155/2013/240571
Research Article

Determination of Mobility and Charge Carriers Concentration from Ionic Conductivity in Sodium Germanate Glasses above and below

1PROTEC/PEI-Postgraduate Program in Industrial Engineering, Department of Chemical Engineering, Polytechnic School, Federal University of Bahia, Rua Aristides Novis 2, Federação, 40210-630 Salvador, BA, Brazil
2Vitreous Materials Laboratory, Institute of Humanities, Arts, and Sciences, Federal University of Bahia, Rua Barão de Jeremoabo s/n, Idioms Center Pavilion, Ondina University Campus, 40170-115 Salvador, BA, Brazil

Received 31 October 2012; Accepted 28 November 2012

Academic Editors: M. A. Esteso and X. He

Copyright © 2013 Marcio Luis Ferreira Nascimento. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Vogel, “The law of the relationship between viscosity of liquids and the temperature,” Physikalische Zeitschrift, vol. 22, pp. 645–646, 1921. View at Google Scholar
  2. G. Tamman and W. Hesse, “Die Abhängigkeit der viscosität von der temperatur bie unterkühlten flüssigkeiten,” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 156, pp. 245–257, 1926. View at Google Scholar
  3. G. S. Fulcher, “Analysis of recent measurements of the viscosity of glasses,” Journal of the American Ceramic Society, vol. 8, no. 6, pp. 339–355, 1925. View at Google Scholar
  4. P. B. Macedo and T. A. Litovitz, “On the relative roles of free volume and activation energy in the viscosity of liquids,” Journal of Chemical Physics, vol. 42, p. 245, 1965. View at Google Scholar
  5. A. K. Doolittle, “Studies in newtonian flow—II. the dependence of the viscosity of liquids on free-space,” Journal of Applied Physics, vol. 22, no. 12, pp. 1471–1475, 1951. View at Publisher · View at Google Scholar · View at Scopus
  6. M. H. Cohen and D. Turnbull, “Molecular transport in liquids and glasses,” Journal of Chemical Physics, vol. 31, p. 1164, 1959. View at Google Scholar
  7. G. J. Dienes, “Activation energy for viscous flow and short-range order,” Journal of Applied Physics, vol. 24, no. 6, pp. 779–782, 1953. View at Publisher · View at Google Scholar · View at Scopus
  8. A. D. Akopyan, Issledovanie Fiziko-Khimicheskikh Svoistv Stekol Sistemy Na2O-RO-GeO2 i Razrabotka na ikh Osnove Novykh Sostavov dlya Vakuumnoi Tekhniki [Ph.D. thesis], Advisor: K. A. Kostanyan, Yerevan State University, 1973.
  9. J. L. Souquet and W. G. Perera, “Thermodynamics applied to ionic transport in glasses,” Solid State Ionics, vol. 40-41, no. 2, pp. 595–604, 1990. View at Google Scholar · View at Scopus
  10. J. L. Souquet, M. Duclot, and M. Levy, “Ionic transport mechanisms in oxide based glasses in the supercooled and glassy states,” Solid State Ionics, vol. 105, pp. 237–242, 1998. View at Google Scholar
  11. E. I. Kamitsos, M. A. Karakassides, and G. D. Chryssikos, “Cation-network interactions in binary alkali metal borate glasses. A far-infrared study,” Journal of Physical Chemistry, vol. 91, no. 22, pp. 5807–5813, 1987. View at Google Scholar · View at Scopus
  12. G. D. L. K. Jayasinghe, D. Coppo, P. W. S. K. Bandaranayake, and J. L. Souquet, “Electrical properties of TeO2 glasses with Na2O as network modifier,” Solid State Ionics, vol. 76, no. 3-4, pp. 297–300, 1995. View at Google Scholar · View at Scopus
  13. D. Ravaine and J. L. Souquet, “A thermodynamic approach to ionic conductivity in oxide glasses—part 1. Correlation of the ionic conductivity with the chemical potential of alkali oxide in oxide glasses,” Physics and Chemistry of Glasses, vol. 18, no. 2, pp. 27–31, 1977. View at Google Scholar
  14. D. Ravaine and J. L. Souquet, “A thermodynamic approach to ionic conductivity in oxide glasses—part 2. A statistical model for the variations of the chemical potential of the constituents in binary alkali oxide glasses,” Physics and Chemistry of Glasses, vol. 19, no. 5, pp. 115–120, 1978. View at Google Scholar
  15. S. W. Martin and C. A. Angell, “Dc and Ac conductivity in wide composition range Li2O.P2O5 glasses,” Journal of Non-Crystalline Solids, vol. 83, no. 1-2, pp. 185–207, 1986. View at Google Scholar
  16. J. C. Reggiani, J. P. Malugani, and J. Bernard, “Etude des systèmes vitreaux AgPO3-AgX (X=I, Br, Cl) par calorimétrie de dissolution. Correlation entre l'actvite thermodynamique de AgX et la conductivité ionique du verre,” Journal de Chimie Physique, vol. 75, no. 9, pp. 849–854, 1978. View at Google Scholar
  17. A. Pradel, F. Henn, J. L. Souquet, and M. Ribes, “Use of a thermodynamic model to interpret Li+ ionic conduction in oxide and sulphide binary glasses,” Philosophical Magazine B, vol. 60, no. 6, pp. 741–751, 1989. View at Google Scholar · View at Scopus
  18. C. I. B. Fincham and F. D. Richardson, “The behaviour of sulphur in silicate and aluminate melts,” Proceedings of the Royal Society of London, vol. 223, pp. 40–62, 1954. View at Google Scholar
  19. G. W. Toop and C. Samis, “Part II—papers—hydride habit in zirconium and in unstressed and stressed zircaloy-4,” Transactions of the Metallurgical Society of AIME, vol. 224, p. 878, 1962. View at Google Scholar
  20. O. Kubaschewski, F. E. Evans, and C. B. Alcock, Metallurgical Thermochemistry, Pergamon, 1967.
  21. N. Umesaki, N. Iwamoto, M. Tatsumisago, and T. Minami, “A structural study of rapidly quenched glasses in the system Li2OSiO2,” Journal of Non-Crystalline Solids, vol. 106, no. 1–3, pp. 77–80, 1988. View at Google Scholar · View at Scopus
  22. M. L. F. Nascimento, “Test of the Anderson Stuart model and correlation between free volume and the universal conductivity in sodium silicate glasses,” Journal of Materials Science, vol. 42, pp. 3841–3850, 2007. View at Google Scholar
  23. M. L. F. Nascimento and S. Watanabe, “Test of the Anderson Stuart model and correlation between free volume and the universal conductivity in potassium silicate glasses,” Materials Chemistry and Physics, vol. 105, pp. 308–314, 2007. View at Google Scholar
  24. M. L. F. Nascimento, E. do Nascimento, and S. Watanabe, “Test of Anderson-Stuart model and the “Universal” conductivity in Rubidium and cesium silicate glasses,” Brazilian Journal of Physics, vol. 35, pp. 626–631, 2005. View at Google Scholar
  25. M. L. F. Nascimento, A. C. M. Rodrigues, and J. L. Souquet, “Microscopic and thermodynamic interpretations of experimental data on ionic conductivity in lithium silicate glasses,” Physics and Chemistry of Glasses, vol. 51, no. 1, pp. 69–77, 2010. View at Google Scholar · View at Scopus
  26. M. L. F. Nascimento and S. Watanabe, ““Universal” curve of ionic conductivities in binary alkali silicate glasses,” Journal of Materials Science, vol. 40, no. 18, pp. 5079–5081, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. M. L. F. Nascimento and S. Watanabe, ““Universal” curve of ionic conductivities in binary alkali borate glasses,” Journal of Materials Science, vol. 40, no. 16, pp. 4423–4425, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. M. L. F. Nascimento, E. do Nascimento, and S. Watanabe, ““Universal” curve of ionic conductivities in binary alkali germanate glasses,” Materials Chemistry and Physics, vol. 96, pp. 55–58, 2006. View at Google Scholar
  29. M. L. F. Nascimento and S. Watanabe, “Universal curve of ionic conductivities in binary alkali tellurite glasses,” Brazilian Journal of Physics, vol. 36, pp. 795–798, 2006. View at Google Scholar
  30. M. L. F. Nascimento and C. Aparício, “Viscosity of strong and fragile glass-forming liquids investigated by means of principal component analysis,” Journal of Physics and Chemistry of Solids, vol. 68, pp. 104–110, 2007. View at Google Scholar
  31. M. L. F. Nascimento and C. Aparicio, “Data classification with the Vogel-Fulcher-Tammann-Hesse viscosity equation using correspondence analysis,” Physica B, vol. 398, no. 1, pp. 71–77, 2007. View at Google Scholar
  32. F. A. Kröger, The Chemistry of Imperfect Crystals, North Holland, Amsterdam, The Netherlands, 1964.
  33. E. Caillot, M. J. Duclot, J. L. Souquet, M. Levy, F. G. K. Baucke, and R. D. Werner, “Unified model for ionic transport in alkali disilicates below and above the glass transition,” Physics and Chemistry of Glasses, vol. 35, no. 1, pp. 22–27, 1994. View at Google Scholar · View at Scopus
  34. I. Gutzow and J. W. P. Schmelzer, The Vitreous State, Springer, 1995.
  35. J. L. Souquet, M. L. F. Nascimento, and A. C. M. Rodrigues, “Charge carrier concentration and mobility in alkali silicates,” Journal of Chemical Physics, vol. 132, Article ID 034704, 2010. View at Google Scholar
  36. V. Clément, D. Ravaine, C. Déportes, and R. Billat, “Measurement of Hall mobilities in AgP03 Agi glasses,” Solid State Ionics, vol. 28–30, pp. 1572–1578, 1988. View at Google Scholar
  37. A. C. M. Rodrigues, M. L. F. Nascimento, C. B. Bragatto, and J. L. Souquet, “Charge carrier mobility and concentration as a function of composition in AgPO3-AgI glasses,” Journal of Chemical Physics, vol. 135, Article ID 234504, 2011. View at Google Scholar