Table of Contents
ISRN Biotechnology
Volume 2013, Article ID 250749, 13 pages
http://dx.doi.org/10.5402/2013/250749
Research Article

Biofilm-Mediated Enhanced Crude Oil Degradation by Newly Isolated Pseudomonas Species

Department of Biological Sciences, Indian Institute of Science Education & Research-Kolkata, Mohanpur Campus, Nadia 741252, India

Received 31 December 2012; Accepted 25 January 2013

Academic Editors: W. J. Ernst, W. A. Kues, O. Pontes, S. Sanyal, and J. Sereikaite

Copyright © 2013 Debdeep Dasgupta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Blumer, H. L. Sanders, J. F. Grassle, and G. R. Hampson, “A small oil spill,” Environment, vol. 13, no. 2, pp. 1–12, 1971. View at Google Scholar
  2. M. B. Fernandes, M. A. Sicre, A. Boireau, and J. Tronczynski, “Polyaromatic hydrocarbon (PAH) distributions in the Seine River and its estuary,” Marine Pollution Bulletin, vol. 34, no. 11, pp. 857–867, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Sei and B. Z. Fathepure, “Biodegradation of BTEX at high salinity by an enrichment culture from hypersaline sediments of Rozel Point at Great Salt Lake,” Journal of Applied Microbiology, vol. 107, no. 6, pp. 2001–2008, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Deziel, G. Paquette, R. Villemur, F. Lepine, and J. G. Bisaillon, “Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons,” Applied and Environmental Microbiology, vol. 62, no. 6, pp. 1908–1912, 1996. View at Google Scholar · View at Scopus
  5. H. P. Zhao, L. Wang, J. R. Ren, Z. Li, M. Li, and H. W. Gao, “Isolation and characterization of phenanthrene-degrading strains Sphingomonas sp. ZP1 and Tistrella sp. ZP5,” Journal of Hazardous Materials, vol. 152, no. 3, pp. 1293–1300, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. R. C. Prince, “Bioremediation of marine oil spills,” Trends in Biotechnology, vol. 15, no. 5, pp. 158–160, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Bruns and L. Berthe-Corti, “Fundibacter jadensis gen. nov., sp. nov., a new slightly halophilic bacterium, isolated from intertidal sediment,” International Journal of Systematic Bacteriology, vol. 49, no. 2, pp. 441–448, 1999. View at Google Scholar · View at Scopus
  8. M. M. Yakimov, P. N. Golyshin, S. Lang et al., “Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium,” International Journal of Systematic Bacteriology, vol. 48, no. 2, pp. 339–348, 1998. View at Google Scholar · View at Scopus
  9. M. J. Gauthier, B. Lafay, R. Christen et al., “Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium,” International Journal of Systematic Bacteriology, vol. 42, no. 4, pp. 568–576, 1992. View at Google Scholar · View at Scopus
  10. M. A. Engelhardt, K. Daly, R. P. J. Swannell, and I. M. Head, “Isolation and characterization of a novel hydrocarbon-degrading, Gram-positive bacterium, isolated from intertidal beach sediment, and description of Planococcus alkanoclasticus sp. nov.,” Journal of Applied Microbiology, vol. 90, no. 2, pp. 237–247, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. I. M. Head and R. P. J. Swannell, “Bioremediation of petroleum hydrocarbon contaminants in marine habitats,” Current Opinion in Biotechnology, vol. 10, no. 3, pp. 234–239, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. G. D. Floodgate, “Some environmental aspects of marine hydrocarbon bacteriology,” Aquatic Microbial Ecology, vol. 9, no. 1, pp. 3–11, 1995. View at Google Scholar · View at Scopus
  13. A. D. Geiselbrecht, R. P. Herwig, J. W. Deming, and J. T. Staley, “Enumeration and phylogenetic analysis of polycyclic aromatic hydrocarbon-degrading marine bacteria from Puget Sound sediments,” Applied and Environmental Microbiology, vol. 62, no. 9, pp. 3344–3349, 1996. View at Google Scholar · View at Scopus
  14. R. Singh, D. Paul, and R. K. Jain, “Biofilms: implications in bioremediation,” Trends in Microbiology, vol. 14, no. 9, pp. 389–397, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Paul, G. Pandey, J. Pandey, and R. K. Jain, “Accessing microbial diversity for bioremediation and environmental restoration,” Trends in Biotechnology, vol. 23, no. 3, pp. 135–142, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Pandey and R. K. Jain, “Bacterial chemotaxis toward environmental pollutants: role in bioremediation,” Applied and Environmental Microbiology, vol. 68, no. 12, pp. 5789–5795, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. P. L. Stelmack, M. R. Gray, and M. A. Pickard, “Bacterial adhesion to soil contaminants in the presence of surfactants,” Applied and Environmental Microbiology, vol. 65, no. 1, pp. 163–168, 1999. View at Google Scholar · View at Scopus
  18. R. Morgan, S. Kohn, S. H. Hwang, D. J. Hassett, and K. Sauer, “BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa,” Journal of Bacteriology, vol. 188, no. 21, pp. 7335–7343, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Schmidt, M. Musken, T. Becker et al., “The Pseudomonas aeruginosa chemotaxis methyltransferase CheR1 impacts on bacterial surface sampling,” PLoS ONE, vol. 6, no. 3, Article ID e18184. View at Publisher · View at Google Scholar
  20. J. W. Costerton, P. S. Stewart, and E. P. Greenberg, “Bacterial biofilms: a common cause of persistent infections,” Science, vol. 284, no. 5418, pp. 1318–1322, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Wimpenny, W. Manz, and U. Szewzyk, “Heterogeneity in biofilms,” FEMS Microbiology Reviews, vol. 24, no. 5, pp. 661–671, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. A. W. Decho, “Microbial biofilms in intertidal systems: an overview,” Continental Shelf Research, vol. 20, no. 10-11, pp. 1257–1273, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Klein, P. Bouriat, P. Goulas, and R. Grimaud, “Behavior of Marinobacter hydrocarbonoclasticus SP17 cells during initiation of biofilm formation at the alkane-water interface,” Biotechnology and Bioengineering, vol. 105, no. 3, pp. 461–468, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Barkay and J. Schaefer, “Metal and radionuclide bioremediation: issues, considerations and potentials,” Current Opinion in Microbiology, vol. 4, no. 3, pp. 318–323, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Shimada, Y. Itoh, K. Washio, and M. Morikawa, “Efficacy of forming biofilms by naphthalene degrading Pseudomonas stutzeri T102 toward bioremediation technology and its molecular mechanisms,” Chemosphere, vol. 87, no. 3, pp. 226–233, 2012. View at Publisher · View at Google Scholar
  26. P. Chandran and N. Das, “Degradation of diesel oil by immobilized Candida tropicalis and biofilm formed on gravels,” Biodegradation, vol. 22, no. 6, pp. 1181–1189, 2011. View at Publisher · View at Google Scholar
  27. C. Gertler, G. Gerdts, K. N. Timmis, M. M. Yakimov, and P. N. Golyshin, “Populations of heavy fuel oil-degrading marine microbial community in presence of oil sorbent materials,” Journal of Applied Microbiology, vol. 107, no. 2, pp. 590–605, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Mahmoud, R. Al-Hasan, M. Khanafer, and S. Radwan, “A microbiological study of the self-cleaning potential of oily Arabian Gulf coasts,” Environmental Science and Pollution Research, vol. 17, no. 2, pp. 383–391, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Bødtker, T. Thorstenson, B. L. P. Lillebø et al., “The effect of long-term nitrate treatment on SRB activity, corrosion rate and bacterial community composition in offshore water injection systems,” Journal of Industrial Microbiology and Biotechnology, vol. 35, no. 12, pp. 1625–1636, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. K. S. Cho, O. K. Choi, Y. H. Joo, K. M. Lee, T. H. Lee, and H. W. Ryu, “Characterization of biofilms occurred in seepage groundwater contaminated with petroleum within an urban subway tunnel,” Journal of Environmental Science and Health Part A, vol. 39, no. 3, pp. 639–650, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. Liu, A. M. Jacobson, and R. G. Luthy, “Biodegradation of naphthalene in aqueous nonionic surfactant systems,” Applied and Environmental Microbiology, vol. 61, no. 1, pp. 145–151, 1995. View at Google Scholar · View at Scopus
  32. N. A. Sorkhoh, M. A. Ghannoum, A. S. Ibrahim, R. J. Stretton, and S. S. Radwan, “Crude oil and hydrocarbon-degrading strains of Rhodococcus rhodochrous isolated from soil and marine environments in Kuwait,” Environmental Pollution, vol. 65, no. 1, pp. 1–17, 1990. View at Google Scholar · View at Scopus
  33. J. G. Holt, N. R. Krieg, P. H. A. Sneat, J. T. Staley, and S. T. Williams, Bergey's Manual of Determinative Bacteriology, Williams & Willkins,, Baltimore, Md, USA, 1994.
  34. S. T. Williams, M. E. Sharpe, and J. G. Holt, Bergey's Manual of Systematic Bacteriology, Vol. IV, Williams & Wilkins, Baltimore, Md, USA, 1989.
  35. J. T. Staley, M. P. Bryant, N. Pfenning, and J. G. Holt, Bergey's Manual of Systematic Bacteriology, Vol. III, Williams & Wilkins, Baltimore, Md, USA, 1989.
  36. M. Hasanuzzaman, A. Ueno, H. Ito et al., “Degradation of long-chain n-alkanes (C36 and C40) by Pseudomonas aeruginosa strain WatG,” International Biodeterioration and Biodegradation, vol. 59, no. 1, pp. 40–43, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. V. Kisand, R. Cuadros, and J. Wikner, “Phylogeny of culturable estuarine bacteria catabolizing riverine organic matter in the northern Baltic Sea,” Applied and Environmental Microbiology, vol. 68, no. 1, pp. 379–388, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990. View at Publisher · View at Google Scholar · View at Scopus
  39. V. J. M. Allan, M. E. Callow, L. E. Macaskie, and M. Paterson-Beedle, “Effect of nutrient limitation on biofilm formation and phosphatase activity of a Citrobacter sp.,” Microbiology, vol. 148, no. 1, pp. 277–288, 2002. View at Google Scholar · View at Scopus
  40. A. Rajasekar, T. G. Babu, S. Maruthamuthu, S. T. K. Pandian, S. Mohanan, and N. Palaniswamy, “Biodegradation and corrosion behaviour of Serratia marcescens ACE2 isolated from an Indian diesel-transporting pipeline,” World Journal of Microbiology and Biotechnology, vol. 23, no. 8, pp. 1065–1074, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. H. P. Zhao, L. Wang, J. R. Ren, Z. Li, M. Li, and H. W. Gao, “Isolation and characterization of phenanthrene-degrading strains Sphingomonas sp. ZP1 and Tistrella sp. ZP5,” Journal of Hazardous Materials, vol. 152, no. 3, pp. 1293–1300, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Raulio, M. Järn, J. Ahola et al., “Microbe repelling coated stainless steel analysed by field emission scanning electron microscopy and physicochemical methods,” Journal of Industrial Microbiology and Biotechnology, vol. 35, no. 7, pp. 751–760, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. A. D. Peacock, Y. J. Chang, J. D. Istok et al., “Utilization of microbial biofilms as monitors of bioremediation,” Microbial Ecology, vol. 47, no. 3, pp. 284–292, 2004. View at Google Scholar · View at Scopus
  44. P. J. Vaysse, L. Prat, S. Mangenot, S. Cruveiller, P. Goulas, and R. Grimaud, “Proteomic analysis of Marinobacter hydrocarbonoclasticus SP17 biofilm formation at the alkane-water interface reveals novel proteins and cellular processes involved in hexadecane assimilation,” Research in Microbiology, vol. 160, no. 10, pp. 829–837, 2009. View at Publisher · View at Google Scholar
  45. R. Singh, D. Paul, and R. K. Jain, “Biofilms: implications in bioremediation,” Trends in Microbiolog, vol. 14, no. 9, pp. 389–397, 2006. View at Publisher · View at Google Scholar
  46. H. Al-Awadhi, R. H. Al-Hasan, N. A. Sorkhoh, S. Salamah, and S. S. Radwan, “Establishing oil-degrading biofilms on gravel particles and glass plates,” International Biodeterioration and Biodegradation, vol. 51, no. 3, pp. 181–185, 2003. View at Publisher · View at Google Scholar
  47. R. Kumar, R. Subarna, H. Dipak, B. Debabrata, and B. Dipa, “Survey of petroleum-degrading bacteria in coastal waters of Sunderban Biosphere Reserve,” World Journal of Microbiology and Biotechnology, vol. 18, no. 6, pp. 575–581, 2002. View at Publisher · View at Google Scholar
  48. M. Venkateswar Reddy, G. N. Nikhil, S. Venkata Mohan, Y. V. Swamy, and P. N. Sarma, “Pseudomonas otitidis as a potential biocatalyst for polyhydroxyalkanoates (PHA) synthesis using synthetic wastewater and acidogenic effluents,” Bioresource Technology, vol. 123, pp. 471–479, 2012. View at Publisher · View at Google Scholar
  49. D. Al-Bader, M. K. Kansour, R. Rayan, and S. S. Radwan, “Biofilm comprising phototrophic,diazotrophic, and hydrocarbon-utilizing bacteria: a promising consortium in the bioremediation of aquatic hydrocarbon pollutants,” Environmental Science and Pollution Research International, 2012. View at Publisher · View at Google Scholar