Table of Contents
ISRN Veterinary Science
Volume 2013, Article ID 280143, 6 pages
http://dx.doi.org/10.1155/2013/280143
Research Article

Effect of Cholesterol and Equex-STM Addition to an Egg Yolk Extender on Pure Spanish Stallion Cryopreserved Sperm

1Reproduction and Obstetrics Area, Department of Animal Pathology, Faculty of Veterinary, University of Zaragoza, Spain
2WorldPathol Ltd. Co., Zaragoza, Spain
3Equine Reproduction Center, Torre Abejar, Garrapinillos, Zaragoza, Spain

Received 26 September 2013; Accepted 30 October 2013

Academic Editors: Ø. Bergh and M. H. Kogut

Copyright © 2013 Lidia Gil et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Vishwanath, “Artificial insemination: the state of the art,” Theriogenology, vol. 59, no. 2, pp. 571–584, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. T. L. Blanchard, D. D. Varner et al., Manual of Equine Reproduction, C.V. Mosby, 2002.
  3. S. L. Adams, P. A. Hessian, and P. V. Mladenov, “Cryopreservation of sea urchin (Evechinus chloroticus) sperm,” Cryo-Letters, vol. 25, no. 4, pp. 287–299, 2004. View at Google Scholar · View at Scopus
  4. S. I. Drokin, H. Stein, and T. P. Govorukha, “Ultrastructure of carp Cyprinus carpio spermatozoa after cooling, dilution and freeze-thawing,” Cryo-Letters, vol. 24, no. 1, pp. 49–55, 2003. View at Google Scholar · View at Scopus
  5. J.-C. Gwo, C.-Y. Wu, W.-S. P. Chang, and H.-Y. Cheng, “Evaluation of damage in Pacific oyster (Crassostrea gigas) spermatozoa before and after cryopreservation using comet assay,” Cryo-Letters, vol. 24, no. 3, pp. 171–180, 2003. View at Google Scholar · View at Scopus
  6. M. R. Fernández-Santos, M. C. Esteso, A. J. Soler, V. Montoro, and J. J. Garde, “The effects of different cryoprotectants and the temperature of addition on the survival of red deer epididymal spermatozoa,” Cryo-Letters, vol. 26, no. 1, pp. 25–32, 2005. View at Google Scholar · View at Scopus
  7. V. I. Grischenko, A. V. Dunaevskaya, and V. I. Babenko, “Cryopreservation of human sperm using rapid cooling rates,” Cryo-Letters, vol. 24, no. 2, pp. 67–76, 2003. View at Google Scholar · View at Scopus
  8. A. S. L. Medeiros, G. M. Gomes, M. T. Carmo, F. O. Papa, and M. A. Alvarenga, “Cryopreservation of stallion sperm using different amides,” Theriogenology, vol. 58, no. 2–4, pp. 273–276, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. C. M. O. Medeiros, F. Forell, A. T. D. Oliveira, and J. L. Rodrigues, “Current status of sperm cryopreservation: why isn't it better?” Theriogenology, vol. 57, no. 1, pp. 327–344, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. K. F. Weitze and R. Petzoldt, “Preservation of semen,” Animal Reproduction Science, vol. 28, no. 1-4, pp. 229–235, 1992. View at Publisher · View at Google Scholar · View at Scopus
  11. J. C. Samper and C. A. Morris, “Current methods for stallion semen cryopreservation: a survey,” Theriogenology, vol. 49, no. 5, pp. 895–903, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. J. C. Samper, “Management and fertility of mares bred with frozen semen,” Animal Reproduction Science, vol. 68, no. 3-4, pp. 219–228, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Saragusty, H. Gacitua, M. T. Pettit, and A. Arav, “Directional freezing of equine semen in large volumes,” Reproduction in Domestic Animals, vol. 42, no. 6, pp. 610–615, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. R. Clulow, L. J. Mansfield, L. H. A. Morris, G. Evans, and W. M. C. Maxwell, “A comparison between freezing methods for the cryopreservation of stallion spermatozoa,” Animal Reproduction Science, vol. 108, no. 3-4, pp. 298–308, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Sieme, G. Martinsson, H. Rauterberg et al., “Application of techniques for sperm selection in fresh and frozen-thawed stallion semen,” Reproduction in Domestic Animals, vol. 38, no. 2, pp. 134–140, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Aurich, “Recent advances in cooled-semen technology,” Animal Reproduction Science, vol. 107, no. 3-4, pp. 268–275, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. M. H. T. Troedsson, I. K. M. Liu, and B. G. Crabo, “Sperm transport and survival in the mare,” Theriogenology, vol. 49, no. 5, pp. 905–915, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Sieme, R. A. P. Harrison, and A. M. Petrunkina, “Cryobiological determinants of frozen semen quality, with special reference to stallion,” Animal Reproduction Science, vol. 107, no. 3-4, pp. 276–292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. P. R. Loomis and J. K. Graham, “Commercial semen freezing: individual male variation in cryosurvival and the response of stallion sperm to customized freezing protocols,” Animal Reproduction Science, vol. 105, no. 1-2, pp. 119–128, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. S. J. Bedford, D. D. Varner et al., “Cryopreservation induces capacitation-like changes in acrosomal status of stallion spermatozoa.,” 1998.
  21. J. Baumber, B. A. Ball, C. G. Gravance, V. Medina, and M. C. G. Davies-Morel, “The effect of reactive oxygen species on equine sperm motility, viability, acrosomal integrity, mitochondrial membrane potential, and membrane lipid peroxidation,” Journal of Andrology, vol. 21, no. 6, pp. 895–902, 2000. View at Google Scholar · View at Scopus
  22. G. B. Combes, D. D. Varner, F. Schroeder, R. C. Burghardt, and T. L. Blanchard, “Effect of cholesterol on the motility and plasma membrane integrity of frozen equine spermatozoa after thawing,” Journal of Reproduction and Fertility. Supplement, no. 56, pp. 127–132, 2000. View at Google Scholar · View at Scopus
  23. D. M. Neild, B. M. Gadella, M. G. Chaves, M. H. Miragaya, B. Colenbrander, and A. Agüero, “Membrane changes during different stages of a freeze-thaw protocol for equine semen cryopreservation,” Theriogenology, vol. 59, no. 8, pp. 1693–1705, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Heitland, “Motility and fertility of stallion spermatozoa cooled and frozen in a modified skim milk extender containing egg yolk and liposome,” in Equine Reproduction VI, Biology of Reproduction Monograph Series 1, pp. 753–759, 1995. View at Google Scholar
  25. F. S. Zahn, F. O. Papa, and J. A. Dell' Aqua Jr., “Cholesterol incorporation on equine sperm membrane: effects on post-thaw sperm parameters and fertility,” Theriogenology, vol. 58, no. 2–4, pp. 237–240, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Moussa, V. Martinet, A. Trimeche, D. Tainturier, and M. Anton, “Low density lipoproteins extracted from hen egg yolk by an easy method: cryoprotective effect on frozen-thawed bull semen,” Theriogenology, vol. 57, no. 6, pp. 1695–1706, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Peña and C. Linde-Forsberg, “Effects of equex, one- or two-step dilution, and two freezing and thawing rates on post-thaw survival of dog spermatozoa,” Theriogenology, vol. 54, no. 6, pp. 859–875, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Tsutsui, M. Hase, T. Hori et al., “Effect of addition of Orvus ES paste to frozen canine semen extender on sperm acrosomes,” Journal of Veterinary Medical Science, vol. 62, no. 5, pp. 537–538, 2000. View at Google Scholar · View at Scopus
  29. T. Tsutsui, M. Hase, A. Tanaka, N. Fujimura, T. Hori, and E. Kawakami, “Intrauterine and intravaginal insemination with frozen canine semen using an extender consisting of orvus ES paste-supplemented egg yolk tris-fructose citrate,” Journal of Veterinary Medical Science, vol. 62, no. 6, pp. 603–606, 2000. View at Google Scholar · View at Scopus
  30. W. Nizański, A. Dubiel, W. Bielas, and G. J. Dejneka, “Effects of three cryopreservation methods and two semen extenders on the quality of dog semen after thawing,” Journal of Reproduction and Fertility. Supplement, vol. 57, pp. 365–369, 2001. View at Google Scholar · View at Scopus
  31. A. I. Peña, L. López-Lugilde, M. Barrio, J. J. Becerra, L. A. Quintela, and P. G. Herradón, “Studies on the intracellular Ca2+ concentration of frozen-thawed dog spermatozoa: influence of equex from different sources, two thawing diluents and post-thaw incubation in capacitating conditions,” Reproduction in Domestic Animals, vol. 38, no. 1, pp. 27–35, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Tsutsui, M. Hase, T. Hori, T. Ito, and E. Kawakami, “Effects of orvus ES paste on canine spermatozoal longevity after freezing and thawing,” Journal of Veterinary Medical Science, vol. 62, no. 5, pp. 533–535, 2000. View at Google Scholar · View at Scopus
  33. J. D. Cochran, Effects of Centrifugation, Glycerol Level, Cooling to 5C, Freezing Rate on the Post-Thaw Motility of Equine Spermatozoa, Special Series 33, Animal Reproduction Laboratory, Colorado State University, 1984.
  34. L. Von Baer and C. Helleman, “Cryopreservation of Llama (Lama glama) Semen,” Reproduction in Domestic Animals, vol. 34, no. 2, pp. 95–96, 1999. View at Google Scholar
  35. V. G. Pursel, L. L. Schulman, and L. A. Johnson, “Effect of Orvus ES Paste on acrosome morphology, motility and fertilizing capacity of frozen-thawed boar sperm,” Journal of animal science, vol. 47, no. 1, pp. 198–202, 1978. View at Google Scholar · View at Scopus
  36. T. Abaigar, W. V. Holt, R. A. P. Harrison, and G. Del Barrio, “Sperm subpopulations in Boar (Sus scrofa) and Gazelle (Gazella dama mhorr) semen as revealed by pattern analysis of computer-assisted motility assessments,” Biology of Reproduction, vol. 60, no. 1, pp. 32–41, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. M. A. El-Alamy and R. H. Foote, “Freezability of spermatozoa from Finn and Dorset rams in multiple semen extenders,” Animal Reproduction Science, vol. 65, no. 3-4, pp. 245–254, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Akourki, L. Gil, A. Echegaray et al., “Effect of the extender supplement Equex-STM on cryopreserved semen in the Assaf sheep,” Cryo-Letters, vol. 25, no. 2, pp. 147–154, 2004. View at Google Scholar · View at Scopus
  39. P. G. A. Thomas, V. Surman et al., “Addition of sodium dodecyl sulphate to tris-citrate extender improves motility and longevity of frozen-thawed canine spermatozoa,” in Proceedings of the 12th International Congress on Animal Reproduction (ICAR '92), vol. 4, pp. 1823–1825, The Hague, The Netherlands, 1992.
  40. R. P. Amann and B. W. Pickett, An Overview of Frozen Equine Semen: Procedures for Thawing and Insemination of Frozen Equine Spermatozoa, Special Series 33, Animal Reproduction Laboratory, Colorado State University, 1984.
  41. J. Juhász, P. Nagy, M. Kulcsár, and G. Huszenicza, “Methods for semen and endocrinological evaluation of the stallion: a review,” Acta Veterinaria Brno, vol. 69, no. 4, pp. 247–259, 2000. View at Google Scholar · View at Scopus
  42. J. C. Martin, E. Klug, and A. R. Günzel, “Centrifugation of stallion semen and its storage in large volume straws,” Journal of Reproduction and Fertility. Supplement, no. 27, pp. 47–51, 1979. View at Google Scholar · View at Scopus
  43. R. P. Amann and B. W. Pickett, “Principles of cryopreservation and a review of cryopreservation of stallion spermatozoa,” 1987.
  44. J. Verstegen, M. Iguer-Ouada, and K. Onclin, “Computer assisted semen analyzers in andrology research and veterinary practice,” Theriogenology, vol. 57, no. 1, pp. 149–179, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Warnke, A. Tuchscherer, H. Alm, W. Kanitz, S. Blottner, and H. Torner, “Characterisation of movement pattern and velocities of stallion spermatozoa depending on donor, season and cryopreservation,” Acta Veterinaria Hungarica, vol. 51, no. 3, pp. 395–408, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. J. E. Bruemmer, “Collection and freezing of epididymal stallion sperm,” Veterinary Clinics of North America: Equine Practice, vol. 22, no. 3, pp. 677–682, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Eliasson and L. Treichl, “Supravital staining of human spermatozoa,” Fertility and Sterility, vol. 22, no. 2, pp. 134–137, 1971. View at Google Scholar · View at Scopus
  48. V. G. Pursel and L. A. Johnson, “Glutaraldehyde fixation of boar spermatozoa for acrosome evaluation,” Theriogenology, vol. 1, no. 2, pp. 63–68, 1974. View at Google Scholar · View at Scopus
  49. R. S. Jeyendran and L. J. Zaneveld, “Human sperm hypoosmotic swelling test,” Fertility and Sterility, vol. 46, no. 1, pp. 151–152, 1986. View at Google Scholar · View at Scopus
  50. C. Dubé, M. Beaulieu, C. Reyes-Moreno, C. Guillemette, and J. L. Bailey, “Boar sperm storage capacity of BTS and Androhep Plus: viability, motility, capacitation, and tyrosine phosphorylation,” Theriogenology, vol. 62, no. 5, pp. 874–886, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. E. S. Metcalf, “The efficient use of equine cryopreserved semen,” Theriogenology, vol. 68, no. 3, pp. 423–428, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. R. P. Arruda, B. A. Ball, C. G. Gravance, A. R. Garcia, and I. K. M. Liu, “Effects of extenders and cryoprotectants on stallion sperm head morphometry,” Theriogenology, vol. 58, no. 2–4, pp. 253–256, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. B. A. Ball, V. Medina, C. G. Gravance, and J. Baumber, “Effect of antioxidants on preservation of motility, viability and acrosomal integrity of equine spermatozoa during storage at 5C,” Theriogenology, vol. 56, no. 4, pp. 577–589, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. L. M. Thurston, P. F. Watson, and W. V. Holt, “Semen cryopreservation: a genetic explanation for species and individual variation?” Cryo-Letters, vol. 23, no. 4, pp. 255–262, 2002. View at Google Scholar · View at Scopus
  55. P. R. Loomis, “Advanced Methods for Handling and Preparation of Stallion Semen,” Veterinary Clinics of North America: Equine Practice, vol. 22, no. 3, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. C. López-Fernández, F. Crespo, F. Arroyo et al., “Dynamics of sperm DNA fragmentation in domestic animals. II. The stallion,” Theriogenology, vol. 68, no. 9, pp. 1240–1250, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Arav, M. Pearl, and Y. Zeron, “Does lipid profile explain chilling sensitivity and membrane lipid phase transition of spermatozoa and oocytes?” Cryo-Letters, vol. 21, no. 3, pp. 179–186, 2000. View at Google Scholar · View at Scopus
  58. M. Vidament, P. Vincent, J. M. Yvon, B. Bruneau, and F. X. Martin, “Glycerol in semen extender is a limiting factor in the fertility in asine and equine species,” Animal Reproduction Science, vol. 89, no. 1-4, pp. 302–305, 2005. View at Google Scholar · View at Scopus
  59. M. Henry, P. P. N. Snoeck, and A. C. P. Cottorello, “Post-thaw spermatozoa plasma membrane integrity and motility of stallion semen frozen with different cryoprotectants,” Theriogenology, vol. 58, no. 2–4, pp. 245–248, 2002. View at Publisher · View at Google Scholar · View at Scopus