Table of Contents
ISRN Polymer Science
Volume 2013 (2013), Article ID 280897, 5 pages
http://dx.doi.org/10.1155/2013/280897
Research Article

Preparation of Nanocomposite Based on Exfoliation of Montmorillonite in Acrylamide Thermosensitive Polymer

1Department of Chemistry, Islamic Azad University, Central Tehran Branch, Tehran 1467686831, Iran
2Department of Chemistry, Payam e Noor University, P.O. Box 19395-3697, Tehran, Iran
3Department of Chemistry, Islamic Azad University, Karaj Branch, P.O. Box 31485-313, Karaj, Iran

Received 3 January 2013; Accepted 2 February 2013

Academic Editors: S. Fakirov, B. Hazer, A. Mousa, D. Pavel, M. Sanopoulou, and S. Yamazaki

Copyright © 2013 Nader Zabarjad Shiraz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. Martín, I. Jiménez, M. Ángeles Gómez, H. W. Ade, D. A. Kilcoyne, and D. Hernádez-Cruz, “Spectromicroscopy study of intercalation and exfoliation in polypropylene/montmorillonite nanocomposites,” The Journal of Physical Chemistry B, vol. 113, pp. 11160–11165, 2009. View at Google Scholar
  2. S. S. Ray and M. Okamoto, “Polymer/layered silicate nanocomposites: a review from preparation to process,” Progress in Polymer Science, vol. 28, p. 1539, 2003. View at Google Scholar
  3. E. T. Thostenson and C. L. T. W. Chou, “Nanocomposites in context,” Composites Science and Technology, vol. 65, pp. 491–516, 2005. View at Google Scholar
  4. K. Kalaitzidou, H. Fukushima, H. Miyagawa, and L. T. Drzal, “Flexural and tensile moduli of polypropylene nanocomposites and comparison of experimental data to Halpin-Tsai and Tandon-Weng models,” Polymer Engineering and Science, vol. 47, no. 11, pp. 1796–1803, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Zha, C. D. Han, H. C. Moon, S. H. Han, D. H. Lee, and J. K. Kim, “Exfoliation of organoclay nanocomposites based on polystyrene-block-polyisoprene-block-poly(2-vinylpyridine) copolymer: solution blending versus melt blending,” Polymer, vol. 51, no. 4, pp. 936–952, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. R. E. Grim, Clay Mineralogy, McGraw Hill, New York, NY, USA, 2nd edition, 1968.
  7. B. K. Theng, The Chemistry of Clay-Organic Reactions, Wiley, New York, NY, USA, 1974.
  8. V. Aseyev, H. Tenhu, and F. M. Winnik, “Non-ionic thermoresponsive polymers in water,” Advances in Polymer Science, vol. 242, pp. 29–89, 2011. View at Google Scholar
  9. S. Aoshima and S. Kanaoka, “Synthesis of stimuli-responsive polymers by living polymerization: poly(N-isopropylacrylamide) and poly(vinyl ether)s,” Advances in Polymer Science, vol. 210, no. 1, pp. 169–208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Alli and B. Hazer, “Synthesis and characterization of poly(N-isopropyl acryl amide)-g-poly(linolenic acid)/poly(linolenic acid) graft copolymers,” Journal of the American Oil Chemists' Society, vol. 88, no. 2, pp. 255–263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Allı, A. Allı, and B. Hazer, “Hyperbranched homo and thermoresponsive graft copolymers by using ATRP-macromonomer initiators,” Journal of Applied Polymer Science, vol. 124, pp. 536–548, 2012. View at Google Scholar
  12. W. F. Lee and Y. T. Fu, “Effect of montmorillonite on the swelling behavior and drug-release behavior of nanocomposite hydrogels,” Journal of Applied Polymer Science, vol. 89, no. 13, pp. 3652–3660, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Dalaran, S. Emik, G. Güçlü, T. B. Iyim, and S. Özgümüş, “Removal of acidic dye from aqueous solutions using poly(DMAEMA-AMPS-HEMA) terpolymer/MMT nanocomposite hydrogels,” Polymer Bulletin, vol. 63, no. 2, pp. 159–171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Aalaie and A. Rahmatpour, “Preparation and swelling behavior of partially hydrolyzed polyacrylamide nanocomposite hydrogels in electrolyte solutions,” Journal of Macromolecular Science B, vol. 47, no. 1, pp. 98–108, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. H. G. Schild, “Poly(N-isopropylacrylamide): experiment, theory and application,” Progress in Polymer Science, vol. 17, pp. 163–249, 1992. View at Google Scholar
  16. C. L. McCormick, B. S. Sumerlin, B. S. Lokitz, and J. E. Stempka, “RAFT-synthesized diblock and triblock copolymers: thermally-induced supramolecular assembly in aqueous media,” Soft Matter, vol. 4, no. 9, pp. 1760–1773, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. E. S. Gil and S. M. Hudson, “Stimuli-reponsive polymers and their bioconjugates,” Progress in Polymer Science, vol. 29, p. 1173, 2004. View at Google Scholar
  18. A. Hedayati and A. Arefazar, “Multi-scale analysis of polypropylene based organoclay containing composites, part 1: morphology,” Polymer Testing, vol. 28, no. 2, pp. 128–138, 2009. View at Publisher · View at Google Scholar · View at Scopus