Table of Contents
ISRN Thermodynamics
Volume 2013 (2013), Article ID 284637, 9 pages
http://dx.doi.org/10.1155/2013/284637
Research Article

Effects of Binary Chemical Reaction and Activation Energy on MHD Boundary Layer Heat and Mass Transfer Flow with Viscous Dissipation and Heat Generation/Absorption

American International University-Bangladesh, House 23, 17, Kamal Ataturk Avenue, Banani, Dhaka-1213, Bangladesh

Received 17 December 2012; Accepted 6 January 2013

Academic Editors: G. L. Aranovich, C. D. Daub, P. Espeau, and Z. Xu

Copyright © 2013 Kh. Abdul Maleque. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Tencer, J. S. Moss, and T. Zapach, “Arrhenius average temperature: the effective temperature for non-fatigue wearout and long term reliability in variable thermal conditions and climates,” IEEE Transactions on Components and Packaging Technologies, vol. 27, no. 3, pp. 602–607, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Truesdell, “Sulle basi della thermomeccanica,” Accademia Nazionale del Lincei, Rendiconti della Classe di Scienze Fisiche, vol. 22, no. 8, pp. 33–38, 1957. View at Google Scholar
  3. C. Truesdell, “Sulle basi della thermomeccanica,” Accademia Nazionale del Lincei, Rendiconti della Classe di Scienze Fisiche, vol. 22, no. 8, pp. 158–166, 1957. View at Google Scholar
  4. N. Mills, “Incompressible mixtures of newtonian fluids,” International Journal of Engineering Science, vol. 4, no. 2, pp. 97–112, 1966. View at Publisher · View at Google Scholar
  5. C. E. Beevers and R. E. Craine, “On the determination of response functions for a binary mixture of incompressible newtonian fluids,” International Journal of Engineering Science, vol. 20, no. 6, pp. 737–745, 1982. View at Google Scholar · View at Scopus
  6. A. Al-Sharif, K. Chamniprasart, K. R. Rajagopal, and A. Z. Szeri, “Lubrication with binary mixtures: liquid-liquid emulsion,” Journal of Tribology, vol. 115, no. 1, pp. 46–55, 1993. View at Google Scholar · View at Scopus
  7. S. H. Wang, A. Al-Sharif, K. R. Rajagopal, and A. Z. Szeri, “Lubrication with binary mixtures: liquid-liquid emulsion in an EHL conjunction,” Journal of Tribology, vol. 115, no. 3, pp. 515–522, 1993. View at Google Scholar · View at Scopus
  8. A. R. Bestman, “Natural convection boundary layer with suction and mass transfer in a porous medium,” International Journal of Energy Research, vol. 14, no. 4, pp. 389–396, 1990. View at Google Scholar · View at Scopus
  9. A. K. Singh and C. K. Dikshit, “Hydromagnetic flow past a continuously moving semi-infinite plate for large suction,” Astrophysics and Space Science, vol. 148, no. 2, pp. 249–256, 1988. View at Publisher · View at Google Scholar · View at Scopus
  10. A. R. Bestman, “Radiative heat transfer to flow of a combustible mixture in a vertical pipe,” International Journal of Energy Research, vol. 15, no. 3, pp. 179–184, 1991. View at Google Scholar · View at Scopus
  11. M. A. Alabraba, A. R. Bestman, and A. Ogulu, “Laminar convection in binary mixture of hydromagnetic flow with radiative heat transfer, I,” Astrophysics and Space Science, vol. 195, no. 2, pp. 431–439, 1992. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Kandasamy, K. Periasamy, and K. K. S. Prabhu, “Effects of chemical reaction, heat and mass transfer along a wedge with heat source and concentration in the presence of suction or injection,” International Journal of Heat and Mass Transfer, vol. 48, no. 7, pp. 1388–1394, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. O. D. Makinde, P. O. Olanrewaju, and W. M. Charles, “Unsteady convection with chemical reaction and radiative heat transfer past a flat porous plate moving through a binary mixture,” Afrika Matematika, vol. 21, no. 1, pp. 1–17, 2011. View at Google Scholar
  14. Kh. A. Maleque, “Unsteady natural convection boundary layer heat and mass transfer flow with exothermic chemical reactions,” Journal of Pure and Applied Mathematics, vol. 9, no. 1, pp. 17–41, 2013. View at Google Scholar
  15. Kh. A. Maleque, “Effects of combined temperature- and depth-dependent viscosity and hall current on an unsteady MHD laminar convective flow due to a rotating disk,” Chemical Engineering Communications, vol. 197, no. 4, pp. 506–521, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. P. R. Nachtsheim and P. Swigert, “Satisfaction of asymptotic boundary conditions in numerical solution of system of nonlinear of boundary layer type,” NASA TN-D3004, 1965. View at Google Scholar