Table of Contents
ISRN Dentistry
Volume 2013, Article ID 296727, 6 pages
http://dx.doi.org/10.1155/2013/296727
Research Article

An In Vitro Evaluation of the Biological Effects of Carbon Nanotube-Coated Dental Zirconia

1Dental Materials Science, Department of Odontology, Faculty of Medicine, Umeå University, 90781 Umeå, Sweden
2Department of Biomedical Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan

Received 17 June 2013; Accepted 17 July 2013

Academic Editors: H. S. Cardash, G. H. Sperber, and A. Vissink

Copyright © 2013 Wen Kou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The purpose of this study is to evaluate functionalized multiwalled carbon nanotubes (fMWCNTs) as a potential coating material for dental zirconia from a biological perspective: its effect on cell proliferation, viability, morphology, and the attachment of an osteoblast-like cell. Osteoblast-like (Saos-2) cells were seeded on uncoated and fMWCNT-coated zirconia discs and in culture dishes that served as controls. The seeding density was 104 cells/cm2, and the cells were cultured for 6 days. Cell viability, proliferation and attachment of the Saos-2 cells were studied. The results showed that Saos-2 cells were well attached to both the uncoated and the fMWCNT-coated zirconia discs. Cell viability and proliferation on the fMWCNT-coated zirconia discs were almost the same as for the control discs. Better cell attachment was seen on the fMWCNT-coated than on the uncoated zirconia discs. In conclusion, fMWCNTs seem to be a promising coating material for zirconia-based ceramic surfaces to increase the roughness and thereby enhance the osseointegration of zirconia implants.