Table of Contents
ISRN Dentistry
Volume 2013 (2013), Article ID 296727, 6 pages
http://dx.doi.org/10.1155/2013/296727
Research Article

An In Vitro Evaluation of the Biological Effects of Carbon Nanotube-Coated Dental Zirconia

1Dental Materials Science, Department of Odontology, Faculty of Medicine, Umeå University, 90781 Umeå, Sweden
2Department of Biomedical Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan

Received 17 June 2013; Accepted 17 July 2013

Academic Editors: H. S. Cardash, G. H. Sperber, and A. Vissink

Copyright © 2013 Wen Kou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Gahlert, D. Burtscher, I. Grunert, H. Kniha, and E. Steinhauser, “Failure analysis of fractured dental zirconia implants,” Clinical Oral Implants Research, vol. 23, no. 3, pp. 287–293, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Andreiotelli, H. J. Wenz, and R. J. Kohal, “Are ceramic implants a viable alternative to titanium implants? A systematic literature review,” Clinical Oral Implants Research, vol. 20, no. 4, pp. 32–47, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Wennerberg and T. Albrektsson, “Current challenges in successful rehabilitation with oral implants,” Journal of Oral Rehabilitation, vol. 38, no. 4, pp. 286–294, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, 1991. View at Google Scholar · View at Scopus
  5. P. M. Ajayan, “Nanotubes from carbon,” Chemical Reviews, vol. 99, no. 7, pp. 1787–1799, 1999. View at Google Scholar · View at Scopus
  6. X. Li, Y. Fan, and F. Watari, “Current investigations into carbon nanotubes for biomedical application,” Biomedical Materials, vol. 5, no. 2, Article ID 022001, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Vardharajula, S. Z. Ali, P. M. Tiwari et al., “Functionalized carbon nanotubes: biomedical applications,” International Journal of Nanomedicine, vol. 7, pp. 5361–5374, 2012. View at Publisher · View at Google Scholar
  8. Y. Sato, A. Yokoyama, K. Shibata et al., “Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo,” Molecular BioSystems, vol. 1, no. 2, pp. 176–182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Peng, L. B. Alemany, J. L. Margrave, and V. N. Khabashesku, “Sidewall carboxylic acid functionalization of single-walled carbon nanotubes,” Journal of the American Chemical Society, vol. 125, no. 49, pp. 15174–15182, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Sofia, M. B. McCarthy, G. Gronowicz, and D. L. Kaplan, “Functionalized silk-based biomaterials for bone formation,” Journal of Biomedical Materials Research, vol. 54, no. 1, pp. 139–148, 2001. View at Publisher · View at Google Scholar
  11. T. Akasaka, A. Yokoyama, M. Matsuoka et al., “Adhesion of human osteoblast-like cells (Saos-2) to carbon nanotube sheets,” Bio-Medical Materials and Engineering, vol. 19, no. 2-3, pp. 147–153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Bhargava, H. Doi, R. Kondo, H. Aoki, T. Hanawa, and S. Kasugai, “Effect of sandblasting on the mechanical properties of Y-TZP zirconia,” Bio-Medical Materials and Engineering, vol. 22, no. 6, pp. 383–398, 2012. View at Google Scholar
  13. M. Terada, S. Abe, T. Akasaka, M. Uo, Y. Kitagawa, and F. Watari, “Multiwalled carbon nanotube coating on titanium,” Bio-Medical Materials and Engineering, vol. 19, no. 1, pp. 45–52, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Sharifi, S. Behzadi, S. Laurent, M. L. Forrest, P. Stroeve, and M. Mahmoudi, “Toxicity of nanomaterials,” Chemical Society Reviews, vol. 41, no. 6, pp. 2323–2343, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Liu, Y. Zhao, B. Sun, and C. Chen, “Understanding the toxicity of carbon nanotubes,” Accounts of Chemical Research, vol. 46, no. 3, pp. 702–713, 2012. View at Publisher · View at Google Scholar
  16. C. P. Firme III and P. R. Bandaru, “Toxicity issues in the application of carbon nanotubes to biological systems,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 6, no. 2, pp. 245–256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Abe, D. Hayashi, T. Akasaka et al., “Synthesis and characterization of a water-soluble multi-walled carbon nanotube and its biodistribution in mice,” Nano Biomedicine, vol. 1, no. 2, pp. 143–150, 2009. View at Google Scholar · View at Scopus
  18. E. Hirata, M. Uo, H. Takita, T. Akasaka, F. Watari, and A. Yokoyama, “Development of a 3D collagen scaffold coated with multiwalled carbon nanotubes,” Journal of Biomedical Materials Research B, vol. 90, no. 2, pp. 629–634, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Matsuoka, T. Akasaka, Y. Totsuka, and F. Watari, “Strong adhesion of Saos-2 cells to multi-walled carbon nanotubes,” Materials Science and Engineering B, vol. 173, no. 1–3, pp. 182–186, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. I. Firkowska, E. Godehardt, and M. Giersig, “Interaction between human osteoblast cells and inorganic two-dimensional scaffolds based on multiwalled carbon nanotubes: a quantitative AFM study,” Advanced Functional Materials, vol. 18, no. 23, pp. 3765–3771, 2008. View at Publisher · View at Google Scholar · View at Scopus