Table of Contents
ISRN Materials Science
Volume 2013, Article ID 302408, 24 pages
Review Article

A Review of Neutron Scattering Applications to Nuclear Materials

Los Alamos Neutron Science Center, MS H805, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Received 20 March 2013; Accepted 14 April 2013

Academic Editors: P. Karjalainen, A. O. Neto, E. Ntsoenzok, D. Sands, H. Saxén, and Y. Sun

Copyright © 2013 Sven C. Vogel. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The growing demand for electric energy will require expansion of the amount of nuclear power production in many countries of the world. Research and development in this field will continue to grow to further increase safety and efficiency of nuclear power generation. Neutrons are a unique probe for a wide range of problems related to these efforts, ranging from crystal chemistry of nuclear fuels to engineering diffraction on cladding or structural materials used in nuclear reactors. Increased flux at modern neutron sources combined with advanced sample environments allows nowadays, for example, studies of reaction kinetics at operating temperatures in a nuclear reactor. Neutrons provide unique data to benchmark simulations and modeling of crystal structure evolution and thermomechanical treatment. Advances in neutron detection recently opened up new avenues of materials characterization using neutron imaging with unparalleled opportunities especially for nuclear materials, where heavy elements (e.g., uranium) need to be imaged together with light elements (e.g., hydrogen, oxygen). This paper summarizes applications of neutron scattering techniques for nuclear materials. Directions for future research, extending the trends observed over the past decade, are discussed.