Table of Contents
ISRN Toxicology
Volume 2013 (2013), Article ID 316075, 8 pages
http://dx.doi.org/10.1155/2013/316075
Research Article

Nanosized Zinc Oxide Induces Toxicity in Human Lung Cells

1Pharmacology and Toxicology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior 474001, India
2Saveetha University, Chennai 600077, India
3Biochemistry and Nutrition Discipline, Defence Food Research Laboratory, Mysore 570011, India

Received 27 May 2013; Accepted 14 July 2013

Academic Editors: G. Ramesh and G. S. Shukla

Copyright © 2013 Devashri Sahu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. L. Colvin, “The potential environmental impact of engineered nanomaterials,” Nature Biotechnology, vol. 21, no. 10, pp. 1166–1170, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Oberdörster, “Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass,” Environmental Health Perspectives, vol. 112, no. 10, pp. 1058–1062, 2004. View at Google Scholar · View at Scopus
  3. M. N. Rittner, “Market analysis of nanaostructured materials,” American Ceramic Society Bulletin, vol. 81, no. 3, pp. 33–36, 2002. View at Google Scholar · View at Scopus
  4. R. F. Service, “Is nanotechnology dangerous?” Science, vol. 290, pp. 1526–1527, 2000. View at Google Scholar
  5. D. B. Warheit, B. R. Laurence, K. L. Reed, D. H. Roach, G. A. M. Reynolds, and T. R. Webb, “Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats,” Toxicological Sciences, vol. 77, no. 1, pp. 117–125, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. P. J. A. Borm, D. Robbins, S. Haubold et al., “The potential risks of nanomaterials: a review carried out for ECETOC,” Particle and Fibre Toxicology, vol. 3, article 11, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Stone, H. Johnston, and M. J. D. Clift, “Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions,” IEEE Transactions on Nanobioscience, vol. 6, no. 4, pp. 331–340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Fan and J. G. Lu, “Zinc oxide nanostructures: synthesis and properties,” Journal of Nanoscience and Nanotechnology, vol. 5, no. 10, pp. 1561–1573, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. M. C. Yeber, J. Rodríguez, J. Freer, N. Durán, and H. D. Mansilla, “Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO,” Chemosphere, vol. 41, no. 8, pp. 1193–1197, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Xu, P. Zhang, A. Navrotsky et al., “Hierarchically assembled porous ZnO nanoparticles: synthesis, surface energy, and photocatalytic activity,” Chemistry of Materials, vol. 19, no. 23, pp. 5680–5686, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Jones, B. Ray, K. T. Ranjit, and A. C. Manna, “Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms,” FEMS Microbiology Letters, vol. 279, no. 1, pp. 71–76, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. A. S. Prasad, “Clinical, immunological, anti-inflammatory and antioxidant roles of zinc,” Experimental Gerontology, vol. 43, no. 5, pp. 370–377, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. J. Rincker, G. M. Hill, J. E. Link, A. M. Meyer, and J. E. Rowntree, “Effects of dietary zinc and iron supplementation on mineral excretion, body composition, and mineral status of nursery pigs,” Journal of Animal Science, vol. 83, no. 12, pp. 2762–2774, 2005. View at Google Scholar · View at Scopus
  14. M. Horie, K. Nishio, K. Fujita et al., “Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells,” Chemical Research in Toxicology, vol. 22, no. 3, pp. 543–553, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. H. A. Jeng and J. Swanson, “Toxicity of metal oxide nanoparticles in mammalian cells,” Journal of Environmental Science and Health A, vol. 41, no. 12, pp. 2699–2711, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. J. C. K. Lai, M. B. Lai, S. Jandhyam et al., “Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts,” International Journal of Nanomedicine, vol. 3, no. 4, pp. 533–545, 2008. View at Google Scholar · View at Scopus
  17. D. Li and H. Haneda, “Morphologies of zinc oxide particles and their effects on photocatalysis,” Chemosphere, vol. 51, no. 2, pp. 129–137, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. T. J. Brunner, P. Wick, P. Manser et al., “In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility,” Environmental Science and Technology, vol. 40, no. 14, pp. 4374–4381, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. J. W. Card, D. C. Zeldin, J. C. Bonner, and E. R. Nestmann, “Pulmonary applications and toxicity of engineered nanoparticles,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 295, no. 3, pp. L400–L411, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. P. H. M. Hoet, I. Brüske-Hohlfeld, and O. V. Salata, “Nanoparticles—known and unknown health risks,” Journal of Nanobiotechnology, vol. 2, article 12, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Bertholf, “Zinc,” in Handbook on Toxicity of Inorganic Compounds, H. G. Seiler and H. Siegel, Eds., pp. 788–800, Marcel Dekker Inc, New York, NY, USA, 1988. View at Google Scholar
  22. B. L. Vallee, “The function of metallothionein,” Neurochemistry International, vol. 27, no. 1, pp. 23–33, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. B. L. Vallee and K. H. Falchuk, “The biochemical basis of zinc physiology,” Physiological Reviews, vol. 73, no. 1, pp. 79–118, 1993. View at Google Scholar · View at Scopus
  24. W. S. Beckett, D. F. Chalupa, A. Pauly-Brown et al., “Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults: a human inhalation study,” American Journal of Respiratory and Critical Care Medicine, vol. 171, no. 10, pp. 1129–1135, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. J. M. Fine, T. Gordon, L. C. Chen, P. Kinney, G. Falcone, and W. S. Beckett, “Metal fume fever: characterization of clinical and plasma IL-6 responses in controlled human exposures to zinc oxide fume at and below the threshold limit value,” Journal of Occupational and Environmental Medicine, vol. 39, no. 8, pp. 722–726, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. H. L. Karlsson, P. Cronholm, J. Gustafsson, and L. Möller, “Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes,” Chemical Research in Toxicology, vol. 21, no. 9, pp. 1726–1732, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S. K. Baird, T. Kurz, and U. T. Brunk, “Metallothionein protects against oxidative stress-induced lysosomal destabilization,” Biochemical Journal, vol. 394, no. 1, pp. 275–283, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. T. H. Mahato, G. K. Prasad, B. Singh, J. Acharya, A. R. Srivastava, and R. Vijayaraghavan, “Nanocrystalline zinc oxide for the decontamination of sarin,” Journal of Hazardous Materials, vol. 165, no. 1–3, pp. 928–932, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Ahamed, M. J. Akhtar, M. Raja et al., “ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, survivin and bax/bcl-2 pathways: role of oxidative stress,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 7, no. 6, pp. 904–913, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Denizot and R. Lang, “Rapid colorimetric assay for cell growth and survival—modifications to the tetrazolium dye procedure giving improved sensitivity and reliability,” Journal of Immunological Methods, vol. 89, no. 2, pp. 271–277, 1986. View at Google Scholar · View at Scopus
  31. H. Wang and J. A. Joseph, “Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader,” Free Radical Biology and Medicine, vol. 27, no. 5-6, pp. 612–616, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. P. J. Hissin and R. Hilf, “A fluorometric method for determination of oxidized and reduced glutathione in tissues,” Analytical Biochemistry, vol. 74, no. 1, pp. 214–226, 1976. View at Google Scholar · View at Scopus
  33. R. T. Allen, W. J. Hunter III, and D. K. Agrawal, “Morphological and biochemical characterization and analysis of apoptosis,” Journal of Pharmacological and Toxicological Methods, vol. 37, no. 4, pp. 215–228, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Calcabrini, S. Meschini, M. Marra et al., “Fine environmental particulate engenders alterations in human lung epithelial A549 cells,” Environmental Research, vol. 95, no. 1, pp. 82–91, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. P. J. Thornalley and M. Vasak, “Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals,” Biochimica et Biophysica Acta, vol. 827, no. 1, pp. 36–44, 1985. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M. F. Benedetti, and F. Fiévet, “Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium,” Nano Letters, vol. 6, no. 4, pp. 866–870, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Hanley, J. Layne, A. Punnoose et al., “Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles,” Nanotechnology, vol. 19, no. 29, Article ID 295103, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, and G. Manivannan, “Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 7, no. 2, pp. 184–192, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. X. Deng, Q. Luan, W. Chen et al., “Nanosized zinc oxide particles induce neural stem cell apoptosis,” Nanotechnology, vol. 20, no. 11, Article ID 115101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Lanone, F. Rogerieux, J. Geys et al., “Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines,” Particle and Fibre Toxicology, vol. 6, article 14, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Zhao, L. Xu, T. Zhang, G. Ren, and Z. Yang, “Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal CA3 pyramidal neurons,” NeuroToxicology, vol. 30, no. 2, pp. 220–230, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Donaldson, V. Stone, A. Seaton, and W. MacNee, “Ambient particle inhalation and the cardiovascular system: potential mechanisms,” Environmental Health Perspectives, vol. 109, supplement 4, pp. 523–527, 2001. View at Google Scholar · View at Scopus
  43. A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science, vol. 311, no. 5761, pp. 622–627, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. Y.-M. Zhou, C.-Y. Zhong, I. M. Kennedy, V. J. Leppert, and K. E. Pinkerton, “Oxidative stress and NFκB activation in the lungs of rats: a synergistic interaction between soot and iron particles,” Toxicology and Applied Pharmacology, vol. 190, no. 2, pp. 157–169, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. J. F. Curtin, M. Donovan, and T. G. Cotter, “Regulation and measurement of oxidative stress in apoptosis,” Journal of Immunological Methods, vol. 265, no. 1-2, pp. 49–72, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. F. Oberhammer, J. W. Wilson, C. Dive et al., “Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation,” EMBO Journal, vol. 12, no. 9, pp. 3679–3684, 1993. View at Google Scholar · View at Scopus
  47. M. T.-K. Tsui and W.-X. Wang, “Biokinetics and tolerance development of toxic metals in Daphnia magna,” Environmental Toxicology and Chemistry, vol. 26, no. 5, pp. 1023–1032, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. K.-S. Min, “The physiological significance of metallothionein in oxidative stress,” Yakugaku Zasshi, vol. 127, no. 4, pp. 695–702, 2007. View at Publisher · View at Google Scholar · View at Scopus