Table of Contents
ISRN Robotics
Volume 2013, Article ID 317396, 10 pages
Research Article

Nontumbling Gait for Multilegged Robots and Its Directional Normalized Energy Stability Margin

Fukushima Laboratory Department of Mechanical and Aerospace Engineering, Tokyo Institute of Technology, Ishikawadai 1st Building, 2-12-1 I1-52 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

Received 11 June 2013; Accepted 1 July 2013

Academic Editors: L. Asplund, R. Bostelman, R. Safaric, and Y. Zhou

Copyright © 2013 Evgeny Lazarenko et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This paper discusses the importance of a nontumbling gait, a gait that allows preventing complete tumbling of the robot. Nontumbling gait is made possible by the effect of the swing leg which may contact the ground even when the robot is affected by an external disturbance. Such an effect is present in both static walking and dynamic walking. Stability criterion required to maintain the nontumbling gait is then considered and proposed through generalized directional normalized energy stability margin. The validity of the introduced criterion is evaluated by a tumbling experiment with a simplified walking robot model. The concept is also applied to the gait control of the newly developed walking robot TITAN-XIII.