Table of Contents
ISRN Applied Mathematics
Volume 2013 (2013), Article ID 320180, 6 pages
http://dx.doi.org/10.1155/2013/320180
Research Article

Sliding Mode Control in Finite Time Stabilization for Synchronization of Chaotic Systems

1School of Computer Science and Software Engineering, Tianjin Polytechnic University, Tianjin 300387, China
2State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
3Tianjin Vocational Institute, Tianjin 300410, China

Received 1 August 2013; Accepted 16 September 2013

Academic Editors: M. Sun and L. Wu

Copyright © 2013 Zhan-Shan Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Nana, P. Woafo, and S. Domngang, “Chaotic synchronization with experimental application to secure communications,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 5, pp. 2266–2276, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. M. V. Grzybowski, M. Rafikov, and J. M. Balthazar, “Synchronization of the unified chaotic system and application in secure communication,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 6, pp. 2793–2806, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  3. H. Salarieh and A. Alasty, “Adaptive synchronization of two chaotic systems with stochastic unknown parameters,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 2, pp. 508–519, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  4. C. C. Yang, “One input control for exponential synchronization in generalized Lorenz systems with uncertain parameters,” Journal of the Franklin Institute, vol. 349, no. 1, pp. 349–365, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  5. M. Aghababa and H. Aghababa, “Finite-time stabilization of uncertain non-autonomous chaotic gyroscopes with nonlinear inputs,” Applied Mathematics and Mechanics, vol. 33, no. 2, pp. 155–164, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  6. C. C. Yang, “Synchronization of second-order chaotic systems via adaptive terminal sliding mode control with input nonlinearity,” Journal of the Franklin Institute, vol. 349, no. 6, pp. 2019–2032, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. M. T. Yassen, “Chaos control of chaotic dynamical systems using backstepping design,” Chaos, Solitons and Fractals, vol. 27, no. 2, pp. 537–548, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  8. L. Wu and D. W. C. Ho, “Sliding mode control of singular stochastic hybrid systems,” Automatica, vol. 46, no. 4, pp. 779–783, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  9. L. Wu, X. Su, and P. Shi, “Sliding mode control with bounded L2 gain performance of Markovian jump singular time-delay systems,” Automatica, vol. 48, no. 8, pp. 1929–1933, 2012. View at Google Scholar
  10. L. Wu, P. Shi, and H. Gao, “State estimation and sliding-mode control of markovian jump singular systems,” IEEE Transactions on Automatic Control, vol. 55, no. 5, pp. 1213–1219, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Wu, W. Zheng, and H. Gao, “Dissipativity-based sliding mode control of switched stochastic systems,” IEEE Transactions on Automatic Control, vol. 58, no. 3, pp. 785–793, 2013. View at Google Scholar
  12. M. P. Aghababa and A. Heydari, “Chaos synchronization between two different chaotic systems with uncertainties, external disturbances, unknown parameters and input nonlinearities,” Applied Mathematical Modelling, vol. 36, no. 4, pp. 1639–1652, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  13. M. P. Aghababa, S. Khanmohammadi, and G. Alizadeh, “Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique,” Applied Mathematical Modelling, vol. 35, no. 6, pp. 3080–3091, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  14. H. Wang, Z. Z. Han, Q. Y. Xie, and W. Zhang, “Finite-time chaos control via nonsingular terminal sliding mode control,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 6, pp. 2728–2733, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  15. S. Laghrouche, F. Plestan, and A. Glumineau, “Higher order sliding mode control based on integral sliding mode,” Automatica, vol. 43, no. 3, pp. 531–537, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  16. I. Boiko and L. Fridman, “Analysis of chattering in continuous sliding-mode controllers,” IEEE Transactions on Automatic Control, vol. 50, no. 9, pp. 1442–1446, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Floquet, J. Barbot, and W. Perruquetti, “Higher-order sliding mode stabilization for a class of nonholonomic perturbed systems,” Automatica, vol. 39, no. 6, pp. 1077–1083, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  18. A. Levant, “Homogeneity approach to high-orde rsliding mode design,” Automatica, vol. 41, no. 5, pp. 823–830, 2005. View at Google Scholar
  19. S. Bhat and D. Bernstein, “Geometric homogeneity with applications to finite-time stability,” Mathematics of Control, Signals, and Systems, vol. 17, no. 2, pp. 101–127, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus