Table of Contents
ISRN Nephrology
Volume 2013, Article ID 341026, 8 pages
http://dx.doi.org/10.5402/2013/341026
Clinical Study

Urea Concentration and Haemodialysis Dose

Dialysis Unit, Savonlinna Central Hospital, Keskussairaalantie 6, P.O. Box 111, 57101 Savonlinna, Finland

Received 30 August 2012; Accepted 17 September 2012

Academic Editors: L. Djukanovic and O. Schuck

Copyright © 2013 Aarne Vartia. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Eloot, A. Torremans, R. De Smet et al., “Kinetic behavior of urea is different from that of other water-soluble compounds: the case of the guanidino compounds,” Kidney International, vol. 67, no. 4, pp. 1566–1575, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. J. T. Daugirdas, “Second generation logarithmic estimates of single-pool variable volume Kt/V: an analysis of error,” Journal of the American Society of Nephrology, vol. 4, no. 5, pp. 1205–1213, 1993. View at Google Scholar · View at Scopus
  3. J. T. Daugirdas, “Simplified equations for monitoring Kt/V, PCRn, eKt/V, and ePCRn,” Advances in Renal Replacement Therapy, vol. 2, no. 4, pp. 295–304, 1995. View at Google Scholar · View at Scopus
  4. P. C. Farrell and F. A. Gotch, “Dialysis therapy guided by kinetic modelling: applications of a variable-volume single-pool model of urea kinetics,” Second Australasian Conference on Heat and Mass Transfer, Sydney, pp. 29–37, 1977. View at Google Scholar · View at Scopus
  5. F. A. Gotch, “Kinetic modeling in hemodialysis,” in Clinical Dialysis, A. R. Nissenson, R. N. Fine, and D. E. Gentile, Eds., pp. 156–188, Appleton & Lange, Norwalk, CT, USA, 3rd edition, 1995. View at Google Scholar
  6. R. A. Wolfe, V. B. Ashby, J. T. Daugirdas, L. Y. C. Agodoa, C. A. Jones, and F. K. Port, “Body size, dose of hemodialysis, and mortality,” American Journal of Kidney Diseases, vol. 35, no. 1, pp. 80–88, 2000. View at Google Scholar · View at Scopus
  7. E. G. Lowrie, Z. Li, N. Ofsthun, and J. M. Lazarus, “Measurement of dialyzer clearance, dialysis time, and body size: death risk relationships among patients,” Kidney International, vol. 66, no. 5, pp. 2077–2084, 2004. View at Google Scholar · View at Scopus
  8. E. M. Spalding, S. M. Chandna, A. Davenport, and K. Farrington, “Kt/V underestimates the hemodialysis dose in women and small men,” Kidney International, vol. 74, no. 3, pp. 348–355, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. F. K. Port, R. A. Wolfe, T. E. Hulbert-Shearon, K. P. McCullough, V. B. Ashby, and P. J. Held, “High dialysis dose is associated with lower mortality among women but not among men,” American Journal of Kidney Diseases, vol. 43, no. 6, pp. 1014–1023, 2004. View at Google Scholar · View at Scopus
  10. T. Depner, J. Daugirdas, T. Greene et al., “Dialysis dose and the effect of gender and body size on outcome in the HEMO Study,” Kidney International, vol. 65, no. 4, pp. 1386–1394, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. A. R. Morton and M. A. Singer, “The problem with Kt/V: dialysis dose should be normalized to metabolic rate not volume,” Seminars in Dialysis, vol. 20, no. 1, pp. 12–15, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. F. Borah, P. Y. Schoenfeld, and F. A. Gotch, “Nitrogen balance during intermittent dialysis therapy of uremia,” Kidney International, vol. 14, no. 5, pp. 491–500, 1978. View at Google Scholar · View at Scopus
  13. E. G. Lowrie, N. M. Laird, T. F. Parker, and J. A. Sargent, “Effect of the hemodialysis prescription on patient morbidity: report from the national cooperative dialysis study,” The New England Journal of Medicine, vol. 305, no. 20, pp. 1176–1181, 1981. View at Google Scholar · View at Scopus
  14. N. M. Laird, C. S. Berkey, and E. G. Lowrie, “Modeling success or failure of dialysis therapy: the national cooperative dialysis study,” Kidney International, vol. 23, no. 13, pp. S101–S106, 1983. View at Google Scholar · View at Scopus
  15. F. A. Gotch and J. A. Sargent, “A mechanistic analysis of the national cooperative dialysis study (NCDS),” Kidney International, vol. 28, no. 3, pp. 526–534, 1985. View at Google Scholar · View at Scopus
  16. J. Levine and D. B. Bernard, “The role of urea kinetic modeling, TAC(urea), and Kt/V in achieving optimal dialysis: a critical reappraisal,” American Journal of Kidney Diseases, vol. 15, no. 4, pp. 285–301, 1990. View at Google Scholar · View at Scopus
  17. R. Hakim, “Assessing the adequacy of dialysis,” Kidney International, vol. 37, no. 2, pp. 822–832, 1990. View at Google Scholar · View at Scopus
  18. D. S. De Wachter, S. Brems, R. Vanholder, P. R. Verdonck, and R. O. Hombrouckx, “Predialysis urea concentration is sufficient to characterize hemodialysis adequacy,” ASAIO Journal, vol. 44, no. 5, pp. M670–M676, 1998. View at Google Scholar · View at Scopus
  19. F. G. Casino and T. Lopez, “The equivalent renal urea clearance: a new parameter to assess dialysis dose,” Nephrology Dialysis Transplantation, vol. 11, no. 8, pp. 1574–1581, 1996. View at Google Scholar · View at Scopus
  20. F. A. Gotch, “The current place of urea kinetic modelling with respect to different dialysis modalities,” Nephrology Dialysis Transplantation, vol. 13, supplement 6, pp. 10–14, 1998. View at Google Scholar · View at Scopus
  21. J. T. Daugirdas, T. A. Depner, T. Greene, and P. Silisteanu, “Solute-solver: a web-based tool for modeling urea kinetics for a broad range of hemodialysis schedules in multiple patients,” American Journal of Kidney Diseases, vol. 54, no. 5, pp. 798–809, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Vartia, “Equivalent continuous clearances EKR and stdK in incremental haemodialysis,” Nephrology Dialysis Transplantation, vol. 27, no. 2, pp. 777–784, 2012. View at Google Scholar
  23. A. Vartia, “Effect of treatment frequency on haemodialysis dose: comparison of EKR and stdKt/V,” Nephrology Dialysis Transplantation, vol. 24, no. 9, pp. 2797–2803, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Eknoyan, G. J. Beck, A. K. Cheung et al., “Effect of dialysis dose and membrane flux in maintenance hemodialysis,” The New England Journal of Medicine, vol. 347, pp. 2010–2019, 2002. View at Google Scholar
  25. J. T. Daugirdas, T. Greene, T. A. Depner, C. Chumlea, M. J. Rocco, and G. M. Chertow, “Anthropometrically estimated total body water volumes are larger than modeled urea volume in chronic hemodialysis patients: effects of age, race, and gender,” Kidney International, vol. 64, no. 3, pp. 1108–1119, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. M. C. Venning, E. B. Faragher, and J. C. Harty, “The relationship between Kt/V and NPCR in hemodialysis (HD) patients in cross-sectional studies (CSS) is mathematical coupling,” Journal of the American Society of Nephrology, vol. 4, p. 393, 1993. View at Google Scholar
  27. J. C. Harty, B. Farragher, H. Boulton et al., “Is the correlation between the normalised protein catabolic rate (NPCR) and Kt/V the result of mathematical coupling?” Journal of the American Society of Nephrology, vol. 4, article 407, 1993. View at Google Scholar
  28. J. I. Shapiro, W. P. Argy, T. A. Rakowski, A. Chester, A. S. Siemsen, and G. E. Schreiner, “The unsuitability of BUN as a criterion for prescription dialysis,” Trans Am Soc Artif Intern Organs, vol. 29, pp. 129–134, 1983. View at Google Scholar
  29. E. G. Lowrie and N. L. Lew, “Death risk in hemodialysis patients: the predictive value of commonly measured variables and an evaluation of death rate differences between facilities,” American Journal of Kidney Diseases, vol. 15, no. 5, pp. 458–482, 1990. View at Google Scholar · View at Scopus
  30. M. Stosovic, M. Stanojevic, S. Simic-Ogrizovic, D. Jovanovic, and L. J. Djukanovic, “Relation between serum urea and mortality of hemodialysis patients,” Renal Failure, vol. 31, no. 5, pp. 335–340, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Degoulet, M. Legrain, I. Reach et al., “Mortality risk factors in patients treated by chronic hemodialysis,” Nephron, vol. 31, no. 2, pp. 103–110, 1982. View at Google Scholar · View at Scopus
  32. F. A. Gotch, J. A. Sargent, and M. L. Keen, “Whither goest Kt/V?” Kidney International, vol. 58, supplement 76, pp. S3–S18, 2000. View at Google Scholar · View at Scopus
  33. E. G. Lowrie and J. A. Sargent, “Clinical example of pharmacokinetic and metabolic modeling: quantitative and individualized prescription of dialysis therapy,” Kidney International, vol. 18, supplement 10, pp. S11–16, 1980. View at Google Scholar · View at Scopus
  34. S. Eloot, A. Torremans, R. De Smet et al., “Complex compartmental behavior of small water-soluble uremic retention solutes: evaluation by direct measurements in plasma and erythrocytes,” American Journal of Kidney Diseases, vol. 50, no. 2, pp. 279–288, 2007. View at Publisher · View at Google Scholar · View at Scopus