Table of Contents
ISRN Biomaterials
Volume 2013, Article ID 347318, 11 pages
http://dx.doi.org/10.5402/2013/347318
Research Article

Amelogenin Peptide Extract Increases Differentiation and Angiogenic and Local Factor Production and Inhibits Apoptosis in Human Osteoblasts

1School of Engineering, Virginia Commonwealth University, 601 West Main Street, Suite 331, Richmond, VA 23284-3068, USA
2Facultad de Odontologia, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Coyoacán, 04510 DF, Mexico
3Institut Straumann AG, Nauenstrasse, 4052 Basel, Switzerland
4Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA

Received 20 May 2013; Accepted 18 June 2013

Academic Editors: W.-C. Chen, S. Lamponi, and V. Larreta-Garde

Copyright © 2013 Rene Olivares-Navarrete et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. D. R. Kalpidis and M. P. Ruben, “Treatment of intrabony periodontal defects with enamel matrix derivative: a literature review,” Journal of Periodontology, vol. 73, no. 11, pp. 1360–1376, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Venezia, M. Goldstein, B. D. Boyan, and Z. Schwartz, “The use of enamel matrix derivative in the treatment of periodontal defects: a literature review and meta-analysis,” Critical Reviews in Oral Biology and Medicine, vol. 15, no. 6, pp. 382–402, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Esposito, M. G. Grusovin, N. Papanikolaou, P. Coulthard, and H. V. Worthington, “Enamel matrix derivative (Emdogain(R)) for periodontal tissue regeneration in intrabony defects,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD003875, 2009. View at Google Scholar · View at Scopus
  4. S. Gestrelius, S. P. Lyngstadaas, and L. Hammarström, “Emdogain—periodontal regeneration based on biomimicry,” Clinical oral investigations, vol. 4, no. 2, pp. 120–125, 2000. View at Google Scholar · View at Scopus
  5. P. D. A. Owens, “A light and electron microscopic study of the early stages of root surface formation in molar teeth in the rat,” Archives of Oral Biology, vol. 24, no. 12, pp. 901–907, 1979. View at Google Scholar · View at Scopus
  6. D. D. Bosshardt and A. Nanci, “Hertwig's epithelial root sheath, enamel matrix proteins, and initiation of cementogenesis in porcine teeth,” Journal of Clinical Periodontology, vol. 31, no. 3, pp. 184–192, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. H. C. Slavkin, P. Bringas Jr., C. Bessem et al., “Hertwig's epithelial root sheath differentiation and initial cementum and bone formation during long-term organ culture of mouse mandibular first molars using serumless, chemically-defined medium,” Journal of Periodontal Research, vol. 24, no. 1, pp. 28–40, 1989. View at Google Scholar · View at Scopus
  8. A. Sculean, P. Windisch, D. Szendröi-Kiss et al., “Clinical and histologic evaluation of an enamel matrix derivative combined with a biphasic calcium phosphate for the treatment of human intrabony periodontal defects,” Journal of Periodontology, vol. 79, no. 10, pp. 1991–1999, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. U. Mirastschijski, D. Konrad, E. Lundberg, S. P. Lyngstadaas, L. N. Jorgensen, and M. S. Ågren, “Effects of a topical enamel matrix derivative on skin wound healing,” Wound Repair and Regeneration, vol. 12, no. 1, pp. 100–108, 2004. View at Google Scholar · View at Scopus
  10. J. D. Termine, A. B. Belcourt, and P. J. Christner, “Properties of dissociatively extracted fetal tooth matrix proteins. I. Principal molecular species in developing bovine enamel,” Journal of Biological Chemistry, vol. 255, no. 20, pp. 9760–9768, 1980. View at Google Scholar · View at Scopus
  11. P. Chadwick and C. Acton, “The use of amelogenin protein in the treatment of hard-to-heal wounds,” British Journal of Nursing, vol. 18, no. 6, pp. S22–S24, 2009. View at Google Scholar · View at Scopus
  12. M. Romanelli, E. Kaha, H. Stege et al., “Effect of amelogenin extracellular matrix protein and compression on hard-to-heal venous leg ulcers: follow-up data,” Journal of Wound Care, vol. 17, no. 1, pp. 17–23, 2008. View at Google Scholar · View at Scopus
  13. S. Delgado, M. Girondot, and J.-Y. Sire, “Molecular evolution of amelogenin in mammals,” Journal of Molecular Evolution, vol. 60, no. 1, pp. 12–30, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Zeichner-David, “Is there more to enamel matrix proteins than biomineralization?” Matrix Biology, vol. 20, no. 5-6, pp. 307–316, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. P. H. Krebsbach, S. K. Lee, Y. Matsuki, C. A. Kozak, K. M. Yamada, and Y. Yamada, “Full-length sequence, localization, and chromosomal mapping of ameloblastin: a novel tooth-specific gene,” Journal of Biological Chemistry, vol. 271, no. 8, pp. 4431–4435, 1996. View at Google Scholar · View at Scopus
  16. C.-C. Hu, M. Fukae, T. Uchida et al., “Cloning and characterization of porcine enamelin mRNAs,” Journal of Dental Research, vol. 76, no. 11, pp. 1720–1729, 1997. View at Google Scholar · View at Scopus
  17. A. G. Fincham, J. Moradian-Oldak, and J. P. Simmer, “The structural biology of the developing dental enamel matrix,” Journal of Structural Biology, vol. 126, no. 3, pp. 270–299, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. H. B. Wen, A. G. Fincham, and J. Moradian-Oldak, “Progressive accretion of amelogenin molecules during nanospheres assembly revealed by atomic force microscopy,” Matrix Biology, vol. 20, no. 5-6, pp. 387–395, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Moradian-Oldak, J. Tan, and A. G. Fincham, “Interaction of amelogenin with hydroxyapatite crystals: an adherence effect through amelogenin molecular self-association,” Biopolymers, vol. 46, no. 4, pp. 225–238, 1998. View at Google Scholar · View at Scopus
  20. H. B. Wen, J. Moradian-Oldak, W. Leung, P. Bringas Jr., and A. G. Fincham, “Microstructures of an amelogenin gel matrix,” Journal of Structural Biology, vol. 126, no. 1, pp. 42–51, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. S. J. Brookes, J. Kirkham, R. C. Shore, S. R. Wood, I. Slaby, and C. Robinson, “Amelin extracellular processing and aggregation during rat incisor amelogenesis,” Archives of Oral Biology, vol. 46, no. 3, pp. 201–208, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Veis, “Amelogenin gene splice products: potential signaling molecules,” Cellular and Molecular Life Sciences, vol. 60, no. 1, pp. 38–55, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Veis, K. Tompkins, K. Alvares et al., “Specific amelogenin gene splice products have signaling effects on cells in culture and in implants in vivo,” Journal of Biological Chemistry, vol. 275, no. 52, pp. 41263–41272, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Tompkins, K. Alvares, A. George, and A. Veis, “Two related low molecular mass polypeptide isoforms of amelogenin have distinct activities in mouse tooth germ differentiation in vitro,” Journal of Bone and Mineral Research, vol. 20, no. 2, pp. 341–349, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. R. E. Grayson, Y. Yamakoshi, E. J. Wood, and M. S. Ågren, “The effect of the amelogenin fraction of enamel matrix proteins on fibroblast-mediated collagen matrix reorganization,” Biomaterials, vol. 27, no. 15, pp. 2926–2933, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Lacerda-Pinheiro, N. Jegat, D. Septier et al., “Early in vivo and in vitro effects of amelogenin gene splice products on pulp cells,” European Journal of Oral Sciences, vol. 114, supplement 1, pp. 232–238, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Zeichner-David, L.-S. Chen, Z. Hsu, J. Reyna, J. Caton, and P. Bringas, “Amelogenin and ameloblastin show growth-factor like activity in periodontal ligament cells,” European Journal of Oral Sciences, vol. 114, supplement 1, pp. 244–253, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. A. G. Fincham and J. Moradian-Oldak, “Amelogenin post-translational modifications: carboxy-terminal processing and the phosphorylation of bovine and porcine “TRAP” and “LRAP” amelogenins,” Biochemical and Biophysical Research Communications, vol. 197, no. 1, pp. 248–255, 1993. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Mumulidu, B. Hildebrand, B. Fabi et al., “Purification and analysis of a 5 kDa component of enamel matrix derivative,” Journal of Chromatography B, vol. 857, no. 2, pp. 210–218, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. Z. Schwartz, D. L. Carnes Jr., R. Pulliam et al., “Porcine fetal enamel matrix derivative stimulates proliferation but not differentiation of pre-osteoblastic 219 cells, inhibits proliferation and stimulates differentiation of osteoblast-like MG63 cells, and increases proliferation and differentiation of normal human osteoblast NHOst cells,” Journal of Periodontology, vol. 71, no. 8, pp. 1287–1296, 2000. View at Google Scholar · View at Scopus
  31. J. C. Rincon, Y. Xiao, W. G. Young, and P. M. Bartold, “Enhanced proliferation, attachment and osteopontin expression by porcine periodontal cells exposed to Emdogain,” Archives of Oral Biology, vol. 50, no. 12, pp. 1047–1054, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Hägewald, N. Pischon, P. Jawor, J.-P. Bernimoulin, and B. Zimmermann, “Effects of enamel matrix derivative on proliferation and differentiation of primary osteoblasts,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 98, no. 2, pp. 243–249, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. J. van den Dolder, A. P. G. Vloon, and J. A. Jansen, “The effect of Emdogain on the growth and differentiation of rat bone marrow cells,” Journal of Periodontal Research, vol. 41, no. 5, pp. 471–476, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. D. R. Davenport, J. M. Mailhot, J. C. Wataha, M. A. Billman, M. M. Sharawy, and M. K. Shrout, “Effects of enamel matrix protein application on the viability, proliferation, and attachment of human periodontal ligament fibroblasts to diseased root surfaces in vitro,” Journal of Clinical Periodontology, vol. 30, no. 2, pp. 125–131, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. R. J. Miron, D. D. Bosshardt, E. Hedbom et al., “Adsorption of enamel matrix proteins to a bovine-derived bone grafting material and its regulation of cell adhesion, proliferation, and differentiation,” Journal of Periodontology, vol. 83, no. 7, pp. 936–947, 2011. View at Google Scholar
  36. H. M. Grandin, A. C. Gemperli, and M. Dard, “Enamel matrix derivative: a review of cellular effects in vitro and a model of molecular arrangement and functioning,” Tissue Engineering B, vol. 18, no. 3, pp. 181–202, 2012. View at Google Scholar
  37. K. Bertl, N. An, C. Bruckmann et al., “Effects of enamel matrix derivative on proliferation/viability, migration, and expression of angiogenic factor and adhesion molecules in endothelial cells in vitro,” Journal of Periodontology, vol. 80, no. 10, pp. 1622–1630, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Carinci, A. Piattelli, L. Guida et al., “Effects of Emdogain on osteoblast gene expression,” Oral Diseases, vol. 12, no. 3, pp. 329–342, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Gestrelius, C. Andersson, D. Lidström, L. Hammarström, and M. Somerman, “In vitro studies on periodontal ligament cells and enamel matrix derivative,” Journal of Clinical Periodontology, vol. 24, no. 9, pp. 685–692, 1997. View at Google Scholar · View at Scopus
  40. Z. Schwartz, R. Dennis, L. Bonewald, L. Swain, R. Gomez, and B. D. Boyan, “Differential regulation of prostaglandin E2 synthesis and phospholipase A2 activity by 1,25-(OH)2D3 in three osteoblast-like cell lines (MC-3T3- E1, ROS 17/2.8, and MG-63),” Bone, vol. 13, no. 1, pp. 51–58, 1992. View at Google Scholar · View at Scopus
  41. J. Y. Martin, D. D. Dean, D. L. Cochran, J. Simpson, B. D. Boyan, and Z. Schwartz, “Proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63) cultured on previously used titanium surfaces,” Clinical Oral Implants Research, vol. 7, no. 1, pp. 27–37, 1996. View at Google Scholar · View at Scopus
  42. C. A. Gregory, W. G. Gunn, A. Peister, and D. J. Prockop, “An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction,” Analytical Biochemistry, vol. 329, no. 1, pp. 77–84, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Yamamoto, K. Seta, C. Morisco, S. F. Vatner, and J. Sadoshima, “Chelerythrine rapidly induces apoptosis through generation of reactive oxygen species in cardiac myocytes,” Journal of Molecular and Cellular Cardiology, vol. 33, no. 10, pp. 1829–1848, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Zhong, L. J. Wike, J. T. Ryaby, D. H. Carney, B. D. Boyan, and Z. Schwartz, “Thrombin peptide TP508 prevents nitric oxide mediated apoptosis in chondrocytes in the endochondral developmental pathway,” Biochimica et Biophysica Acta, vol. 1783, no. 1, pp. 12–22, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. J. F. Guest, E. Nagy, E. Sladkevicius, P. Vowden, and P. Price, “Modelling the relative cost-effectiveness of amelogenin in non-healing venous leg ulcers,” Journal of Wound Care, vol. 18, no. 5, pp. 216–224, 2009. View at Google Scholar · View at Scopus
  46. D. D. Dean, C. H. Lohmann, V. L. Sylvia et al., “Effect of porcine fetal enamel matrix derivative on chondrocyte proliferation, differentiation, and local factor production is dependent on cell maturation state,” Cells Tissues Organs, vol. 171, no. 2-3, pp. 117–127, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. J. P. Simmer and J. C.-C. Hu, “Expression, structure, and function of enamel proteinases,” Connective Tissue Research, vol. 43, no. 2-3, pp. 441–449, 2002. View at Google Scholar · View at Scopus
  48. C. Robinson, S. J. Brookes, R. C. Shore, and J. Kirkham, “The developing enamel matrix: nature and function,” European Journal of Oral Sciences, vol. 106, supplement 1, pp. 282–291, 1998. View at Google Scholar · View at Scopus
  49. C. W. Gibson, Y. Li, B. Daly et al., “The leucine-rich amelogenin peptide alters the amelogenin null enamel phenotype,” Cells Tissues Organs, vol. 189, no. 1–4, pp. 169–174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. R. Warotayanont, D. Zhu, M. L. Snead, and Y. Zhou, “Leucine-rich amelogenin peptide induces osteogenesis in mouse embryonic stem cells,” Biochemical and Biophysical Research Communications, vol. 367, no. 1, pp. 1–6, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. R. Warotayanont, B. Frenkel, M. L. Snead, and Y. Zhou, “Leucine-rich amelogenin peptide induces osteogenesis by activation of the Wnt pathway,” Biochemical and Biophysical Research Communications, vol. 387, no. 3, pp. 558–563, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. F. Boabaid, C. W. Gibson, M. A. Kuehl et al., “Leucine-rich amelogenin peptide: a candidate signaling molecule during cementogenesis,” Journal of Periodontology, vol. 75, no. 8, pp. 1126–1136, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. H. L. Viswanathan, J. E. Berry, B. L. Foster et al., “Amelogenin: a potential regulator of cementum-associated genes,” Journal of Periodontology, vol. 74, no. 10, pp. 1423–1431, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. T. Iwata, Y. Morotome, T. Tanabe, M. Fukae, I. Ishikawa, and S. Oida, “Noggin blocks osteoinductive activity of porcine enamel extracts,” Journal of Dental Research, vol. 81, no. 6, pp. 387–391, 2002. View at Google Scholar · View at Scopus
  55. E. C. Swanson, H. K. Fong, B. L. Foster et al., “Amelogenins regulate expression of genes associated with cementoblasts in vitro,” European Journal of Oral Sciences, vol. 114, supplement 1, pp. 239–243, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Gurpinar, M. A. Onur, Z. C. Cehreli, and F. Tasman, “Effect of enamel matrix derivative on mouse fibroblasts and marrow stromal osteoblasts,” Journal of Biomaterials Applications, vol. 18, no. 1, pp. 25–33, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Javed, H. Chen, and F. Y. Ghori, “Genetic and transcriptional control of bone formation,” Oral and Maxillofacial Surgery Clinics of North America, vol. 22, no. 3, pp. 283–293, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. L. J. Raggatt and N. C. Partridge, “Cellular and molecular mechanisms of bone remodeling,” Journal of Biological Chemistry, vol. 285, no. 33, pp. 25103–25108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. L. F. Bonewald and S. L. Dallas, “Role of active and latent transforming growth Factor,B in bone formation,” Journal of Cellular Biochemistry, vol. 55, no. 3, pp. 350–357, 1994. View at Publisher · View at Google Scholar · View at Scopus
  60. X. Li, C. C. Pilbeam, L. Pan, R. M. Breyer, and L. G. Raisz, “Effects of prostaglandin E2 on gene expression in primary osteoblastic cells from prostaglandin receptor knockout mice,” Bone, vol. 30, no. 4, pp. 567–573, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Kobayashi, N. Udagawa, and N. Takahashi, “Action of RANKL and OPG for osteoclastogenesis,” Critical Reviews in Eukaryotic Gene Expression, vol. 19, no. 1, pp. 61–72, 2009. View at Google Scholar · View at Scopus
  62. B. F. Boyce and L. Xing, “Functions of RANKL/RANK/OPG in bone modeling and remodeling,” Archives of Biochemistry and Biophysics, vol. 473, no. 2, pp. 139–146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. R. A. Kanaan and L. A. Kanaan, “Transforming growth factor β1, bone connection,” Medical Science Monitor, vol. 12, no. 8, pp. RA164–RA169, 2006. View at Google Scholar · View at Scopus
  64. K. Janssens, P. Ten Dijke, S. Janssens, and W. van Hul, “Transforming growth factor-β1 to the bone,” Endocrine Reviews, vol. 26, no. 6, pp. 743–774, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. N. Chegini, “The role of growth factors in peritoneal healing: transforming growth factor beta (TGF-beta),” The European Journal of Surgery, no. 577, pp. 17–23, 1997. View at Google Scholar · View at Scopus
  66. K. R. Cutroneo, “TGF-β-induced fibrosis and SMAD signaling: oligo decoys as natural therapeutics for inhibition of tissue fibrosis and scarring,” Wound Repair and Regeneration, vol. 15, supplement 1, pp. S54–S60, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Kawaguchi, C. C. Pilbeam, J. R. Harrison, and L. G. Raisz, “The role of prostaglandins in the regulation of bone metabolism,” Clinical Orthopaedics and Related Research, no. 313, pp. 36–46, 1995. View at Google Scholar · View at Scopus
  68. S. Yoneda, D. Itoh, S. Kuroda et al., “The effects of enamel matrix derivative (EMD) on osteoblastic cells in culture and bone regeneration in a rat skull defect,” Journal of Periodontal Research, vol. 38, no. 3, pp. 333–342, 2003. View at Google Scholar · View at Scopus
  69. N. H. M. Heng, P. D. N'Guessan, B.-M. Kleber, J.-P. Bernimoulin, and N. Pischon, “Enamel matrix derivative induces connective tissue growth factor expression in human osteoblastic cells,” Journal of Periodontology, vol. 78, no. 12, pp. 2369–2379, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. E. Shimizu, R. Saito, Y. Nakayama et al., “Amelogenin stimulates bone sialoprotein (BSP) expression through fibroblast growth factor 2 response element and transforming growth factor-β1 activation element in the promoter of the BSP gene,” Journal of Periodontology, vol. 76, no. 9, pp. 1482–1489, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Kawase, K. Okuda, H. Yoshie, and D. M. Burns, “Anti-TGF-β antibody blocks enamel matrix derivative-induced upregulation of p21WAF1/cip1 and prevents its inhibition of human oral epithelial cell proliferation,” Journal of Periodontal Research, vol. 37, no. 4, pp. 255–262, 2002. View at Google Scholar · View at Scopus
  72. S. Suzuki, T. Nagano, Y. Yamakoshi et al., “Enamel matrix derivative gel stimulates signal transduction of BMP and TGF-β,” Journal of Dental Research, vol. 84, no. 6, pp. 510–514, 2005. View at Google Scholar · View at Scopus
  73. M. M. L. Deckers, M. Karperien, C. van der Bent, T. Yamashita, S. E. Papapoulos, and C. W. G. M. Löwik, “Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation,” Endocrinology, vol. 141, no. 5, pp. 1667–1674, 2000. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Aida, T. Irié, T. Aida, and T. Tachikawa, “Expression of protein kinases C βI, βII, and VEGF during the differentiation of enamel epithelium in tooth development,” Journal of Dental Research, vol. 84, no. 3, pp. 234–239, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. T. Tsuboi, S. Mizutani, M. Nakano, K. Hirukawa, and A. Togari, “FGF-2 regulates enamel and dentine formation in mouse tooth germ,” Calcified Tissue International, vol. 73, no. 5, pp. 496–501, 2003. View at Publisher · View at Google Scholar · View at Scopus