Table of Contents
ISRN Bioinformatics
Volume 2013, Article ID 361321, 8 pages
http://dx.doi.org/10.1155/2013/361321
Research Article

Transcriptome Analysis of Spermophilus lateralis and Spermophilus tridecemlineatus Liver Does Not Suggest the Presence of Spermophilus-Liver-Specific Reference Genes

1Raffles Institution, One Raffles Institution Lane, 575954, Singapore
2Department of Zoology, The University of Melbourne, Genetics Lane, Parkville, VIC 3010, Australia
3Department of Mathematics and Statistics, South Dakota State University, SD 57007, USA

Received 25 March 2013; Accepted 23 April 2013

Academic Editors: A. Bolshoy and D. Labudde

Copyright © 2013 Bryan M. H. Keng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. Fedrigo, L. R. Warner, A. D. Pfefferle, C. C. Babbitt, P. Cruz-Gordillo, and G. A. Wray, “A pipeline to determine RT-QPCR control genes for evolutionary studies: application to primate gene expression across multiple tissues,” PLoS ONE, vol. 5, no. 9, Article ID e12545, pp. 1–7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Remans, K. Smeets, K. Opdenakker, D. Mathijsen, J. Vangronsveld, and A. Cuypers, “Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations,” Planta, vol. 227, no. 6, pp. 1343–1349, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Agabian, L. Thomashow, M. Milhausen, and K. Stuart, “Structural analysis of variant and invariant genes in trypanosomes,” American Journal of Tropical Medicine and Hygiene, vol. 29, no. 5, pp. 1043–1049, 1980. View at Google Scholar · View at Scopus
  4. D. T. Le, D. L. Aldrich, B. Valliyodan et al., “Evaluation of candidate reference genes for normalization of quantitative RT-PCR in soybean tissues under various abiotic stress conditions,” PloS One, vol. 7, no. 9, Article ID e46487, 2012. View at Google Scholar
  5. J. Vandesompele, K. De Preter, F. Pattyn et al., “Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes,” Genome biology, vol. 3, no. 7, 2002. View at Google Scholar · View at Scopus
  6. C. L. Andersen, J. L. Jensen, and T. F. Ørntoft, “Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets,” Cancer Research, vol. 64, no. 15, pp. 5245–5250, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Kubista, R. Sindelka, A. Tichopad, A. Bergkvist, D. Lindh, and A. Forooran, “The prime technique. Real-time PCR data analysis,” G.I.T. Laboratory Journal, vol. 9, no. 10, pp. 33–35, 2007. View at Google Scholar
  8. G. Kanji, 100 Statistical Tests, Sage, 3rd edition, 2006.
  9. E. Wurmbach, T. Yuen, and S. C. Sealfon, “Focused microarray analysis,” Methods, vol. 31, no. 4, pp. 306–316, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. S. S. J. Heng, O. Y. W. Chan, B. M. H. Keng, and M. H. T. Ling, “Glucan biosynthesis protein G, (mdoG) is a suitable reference gene in Escherichia coli K-12,” ISRN Microbiology, vol. 2011, Article ID 469053, 6 pages, 2011. View at Publisher · View at Google Scholar
  11. I. H. K. Too and M. H. T. Ling, “Signal peptidase complex subunit 1 and hydroxyacyl-CoA dehydrogenase beta subunit are suitable reference genes in human lungs,” ISRN Bioinformatics, vol. 2012, Article ID 790452, 7 pages, 2012. View at Publisher · View at Google Scholar
  12. T. Czechowski, M. Stitt, T. Altmann, M. K. Udvardi, and W. R. Scheible, “Genome-wide identification and testing of superior reference genes for transcript normalization in arabidopsis,” Plant Physiology, vol. 139, no. 1, pp. 5–17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Jain, A. Nijhawan, A. K. Tyagi, and J. P. Khurana, “Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR,” Biochemical and Biophysical Research Communications, vol. 345, no. 2, pp. 646–651, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Nicot, J. F. Hausman, L. Hoffmann, and D. Evers, “Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress,” Journal of Experimental Botany, vol. 56, no. 421, pp. 2907–2914, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. U. E. M. Gibson, C. A. Heid, and P. M. Williams, “A novel method for real time quantitative RT-PCR,” Genome Research, vol. 6, no. 10, pp. 995–1001, 1996. View at Google Scholar · View at Scopus
  16. S. R. Sturzenbaum and P. Kille, “Control genes in quantitative molecular biological techniques: the variability of invariance,” Comparative Biochemistry and Physiology B, vol. 130, pp. 281–289, 2001. View at Google Scholar
  17. G. W. Takle, I. K. Toth, and M. B. Brurberg, “Evaluation of reference genes for real-time RT-PCR expression studies in the plant pathogen Pectobacterium atrosepticum,” BMC Plant Biology, vol. 7, article 50, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. N. C. Noriega, S. G. Kohama, and H. F. Urbanski, “κMicroarray analysis of relative gene expression stability for selection of internal reference genes in the rhesus macaque brain,” BMC Molecular Biology, vol. 11, article 47, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. E. M. Glare, M. Divjak, M. J. Bailey, and E. H. Walters, “β-actin and GAPDH housekeeping gene expression in asthmatic airways is variable and not suitable for normalising mRNA levels,” Thorax, vol. 57, no. 9, pp. 765–770, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Gutierrez, M. Mauriat, S. Guénin et al., “The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants,” Plant Biotechnology Journal, vol. 6, no. 6, pp. 609–618, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Brattelid, L. H. Winer, F. O. Levy, K. Liestøl, O. M. Sejersted, and K. B. Andersson, “Reference gene alternatives to Gapdh in rodent and human heart failure gene expression studies,” BMC Molecular Biology, vol. 11, article 22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Mamo, A. B. Gal, S. Bodo, and A. Dinnyes, “Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro,” BMC Developmental Biology, vol. 7, article 14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Pérez, L. J. Royo, A. Astudillo et al., “Identifying the most suitable endogenous control for determining gene expression in hearts from organ donors,” BMC Molecular Biology, vol. 8, article 114, 2007. View at Google Scholar
  24. C. Pfister, M. S. Tatagiba, and F. Roser, “Selection of suitable reference genes for quantitative real-time polymerase chain reaction in human meningiomas and arachnoidea,” BMC Research Notes, vol. 4, article 275, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. J. B. Dundas and M. H. T. Ling, “Reference genes for Measuring mRNA Expression,” Theory in Biosciences, vol. 131, pp. 215–223, 2012. View at Google Scholar
  26. D. R. Williams, L. E. Epperson, W. Li et al., “Seasonally hibernating phenotype assessed through transcript screening,” Physiological Genomics, vol. 24, no. 1, pp. 13–22, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Cheadle, Y. S. Cho-Chung, K. G. Becker, and M. P. Vawter, “Application of z-score transformation to Affymetrix data,” Applied Bioinformatics, vol. 2, no. 4, pp. 209–217, 2003. View at Google Scholar · View at Scopus
  28. M. H. T. Ling, C. Lefevre, and K. R. Nicholas, “Filtering microarray correlations by statistical literature analysis yields potential hypotheses for lactation research,” The Python Papers, vol. 3, no. 3, article 4, 2008. View at Google Scholar
  29. B. Efron and R. Tibshirani, An Introduction to the Bootstrap, Chapman & Hall/CRC, Boca Raton, Fla, USA, 1993.
  30. J. E. Natale, F. Ahmed, I. Cernak, B. Stoica, and A. I. Faden, “Gene expression profile changes are commonly modulated across models and species after traumatic brain injury,” Journal of Neurotrauma, vol. 20, no. 10, pp. 907–927, 2003. View at Google Scholar · View at Scopus
  31. F. W. Albert, M. Somel, M. Carneiro et al., “A comparison of brain gene expression levels in domesticated and wild animals,” PLoS Genetics, vol. 8, no. 9, Article ID e1002962, 2012. View at Google Scholar
  32. J. Li, Z. Yuan, and Z. Zhang, “The cellular robustness by genetic redundancy in budding yeast,” PLoS Genetics, vol. 6, no. 11, Article ID e1001187, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Stelling, U. Sauer, Z. Szallasi, F. J. Doyle III, and J. Doyle, “Robustness of cellular functions,” Cell, vol. 118, no. 6, pp. 675–685, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Thibault, N. Ismail, and D. T. Ng, “The unfolded protein response supports cellular robustness as a broad-spectrum compensatory pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 51, pp. 20597–20602, 2011. View at Google Scholar
  35. J. M. Whitacre and A. Bender, “Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems,” Theoretical Biology and Medical Modelling, vol. 7, no. 1, article 20, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Gómez-Gardeñes, Y. Moreno, and L. M. Floría, “On the robustness of complex heterogeneous gene expression networks,” Biophysical Chemistry, vol. 115, no. 2-3, pp. 225–228, 2005. View at Google Scholar
  37. M. Bekaert and G. C. Conant, “Transcriptional robustness and protein interactions are associated in yeast,” BMC Systems Biology, vol. 5, article 62, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Moreno-Sánchez, J. Rueda, M. J. Carabaño et al., “Skeletal muscle specific genes networks in cattle,” Functional and Integrative Genomics, vol. 10, no. 4, pp. 609–618, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Lee, M. Jo, J. Lee, S. K. Sang, and S. Kim, “Identification of novel universal housekeeping genes by statistical analysis of microarray data,” Journal of Biochemistry and Molecular Biology, vol. 40, no. 2, pp. 226–231, 2007. View at Google Scholar · View at Scopus