Table of Contents
ISRN Signal Processing
Volume 2013, Article ID 374064, 9 pages
http://dx.doi.org/10.1155/2013/374064
Research Article

Instantaneous Granger Causality with the Hilbert-Huang Transform

Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal

Received 30 November 2012; Accepted 6 January 2013

Academic Editors: G. A. Tsihrintzis and M. Wicks

Copyright © 2013 João Rodrigues and Alexandre Andrade. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. J. Friston, “Functional and effective connectivity in neuroimaging: a synthesis,” Human Brain Mapping, vol. 2, no. 1-2, pp. 56–78, 1994. View at Google Scholar · View at Scopus
  2. C. W. J. Granger, “Investigating causal relations by econometric models and cross-spectral methods,” Econometrica, vol. 37, no. 3, p. 424, 1969. View at Google Scholar
  3. S. L. Bressler and A. K. Seth, “Wiener-Granger Causality: a well established methodology,” NeuroImage, vol. 58, no. 2, pp. 323–329, 2011. View at Google Scholar
  4. G. Deshpande, K. Sathian, and X. Hu, “Effect of hemodynamic variability on Granger causality analysis of fMRI,” NeuroImage, vol. 52, no. 3, pp. 884–896, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Geweke, “Measurement of linear dependence and feedback between multiple time series,” Journal of the American Statistical Association, vol. 77, pp. 304–313, 1982. View at Google Scholar
  6. M. Dhamala, G. Rangarajan, and M. Ding, “Analyzing information flow in brain networks with nonparametric Granger causality,” NeuroImage, vol. 41, no. 2, pp. 354–362, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. N. E. Huang, Z. Shen, S. R. Long et al., “The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society A, vol. 454, no. 1971, pp. 903–995, 1998. View at Google Scholar · View at Scopus
  8. T. Tanaka and D. P. Mandic, “Complex empirical mode decomposition,” IEEE Signal Processing Letters, vol. 14, no. 2, pp. 101–104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. C.-L. Yeh, H.-C. Chang, C.-H. Wu, and P.-L. Lee, “Extraction of single-trial cortical beta oscillatory activities in EEG signals using empirical mode decomposition,” BioMedical Engineering Online, vol. 9, article 25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Liang, S. L. Bressler, E. A. Buffalo, R. Desimone, and P. Fries, “Empirical mode decomposition of field potentials from macaque V4 in visual spatial attention,” Biological Cybernetics, vol. 92, no. 6, pp. 380–392, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. C. M. Sweeney-Reed and S. J. Nasuto, “A novel approach to the detection of synchronisation in EEG based on empirical mode decomposition,” Journal of Computational Neuroscience, vol. 23, no. 1, pp. 79–111, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. K. Kroger and J. Lakey, “Phase locking and empirical mode decompositions in EEG,” Citeseer, no. 1978, 2008.
  13. D. Liu, X. Yang, G. Wang et al., “HHT based cardiopulmonary coupling analysis for sleep apnea detection,” Sleep Medicine, vol. 13, no. 5, pp. 503–509, 2012. View at Google Scholar
  14. M. Hu and H. Liang, “Noise-assisted instantaneous coherence analysis of brain connectivity,” Computational Intelligence and Neuroscience, vol. 2012, Article ID 275073, 12 pages, 2012. View at Publisher · View at Google Scholar
  15. J. Rodrigues and A. Andrade, “A New Approach for Granger Causality between Neuronal Signals using the Empirical Mode Decomposition Algorithm,” Biomedical Engineering / 765: Telehealth / 766: Assistive Technologies, 2012.
  16. M. Kamiński, M. Ding, W. A. Truccolo, and S. L. Bressler, “Evaluating causal relations in neural systems: granger causality, directed transfer function and statistical assessment of significance,” Biological Cybernetics, vol. 85, no. 2, pp. 145–157, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. J. F. Geweke, “Measures of conditional linear dependence and feedback between time series,” Journal of the American Statistical Association, vol. 79, no. 388, pp. 907–915, 1984. View at Google Scholar
  18. M. Eichler, “On the evaluation of information flow in multivariate systems by the directed transfer function,” Biological Cybernetics, vol. 94, no. 6, pp. 469–482, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Schelter, M. Winterhalder, M. Eichler et al., “Testing for directed influences among neural signals using partial directed coherence,” Journal of Neuroscience Methods, vol. 152, no. 1-2, pp. 210–219, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Chen, S. L. Bressler, and M. Ding, “Frequency decomposition of conditional Granger causality and application to multivariate neural field potential data,” Journal of Neuroscience Methods, vol. 150, no. 2, pp. 228–237, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. G. T. Wilson, “Factorization of matricial spectral densities,” SIAM Journal on Applied Mathematics, vol. 23, no. 4, pp. 420–426, 1972. View at Google Scholar · View at Scopus
  22. G. Nolte, A. Ziehe, V. V. Nikulin et al., “Robustly estimating the flow direction of information in complex physical systems,” Physical Review Letters, vol. 100, no. 23, pp. 1–4, 2008. View at Google Scholar
  23. G. Nolte, O. Bai, L. Wheaton, Z. Mari, S. Vorbach, and M. Hallett, “Identifying true brain interaction from EEG data using the imaginary part of coherency,” Clinical Neurophysiology, vol. 115, no. 10, pp. 2292–2307, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. Z. Wu and N. E. Huang, “Ensemble empirical mode decomposition: a noise-assisted data analysis method,” Advances in Adaptive Data Analysis, vol. 1, no. 1, pp. 1–41, 2009. View at Google Scholar
  25. P. Flandrin, G. Rilling, and P. Gonçalvés, “Empirical mode decomposition as a filter bank,” IEEE Signal Processing Letters, vol. 11, no. 2, pp. 112–114, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Rehman and D. P. Mandic, “Multivariate empirical mode decomposition,” Proceedings of the Royal Society A, vol. 466, no. 2117, pp. 1291–1302, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Ur Rehman and D. P. Mandic, “Filter bank property of multivariate empirical mode decomposition,” IEEE Transactions on Signal Processing, vol. 59, no. 5, pp. 2421–2426, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Park, D. Looney, P. Kidmose, M. Ungstrup, and D. P. Mandic, “Time-frequency analysis of EEG asymmetry using bivariate empirical mode decomposition,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 19, no. 4, pp. 366–373, 2011. View at Google Scholar
  29. M. Chávez, M. Le Van Quyen, V. Navarro, M. Baulac, and J. Martinerie, “Spatio-temporal dynamics prior to neocortical seizures: amplitude versus phase couplings,” IEEE Transactions on Bio-Medical Engineering, vol. 50, no. 5, pp. 571–583, 2003. View at Google Scholar · View at Scopus