Table of Contents
ISRN Biotechnology
Volume 2013 (2013), Article ID 382417, 11 pages
http://dx.doi.org/10.5402/2013/382417
Research Article

NaCl Effects on In Vitro Germination and Growth of Some Senegalese Cowpea (Vigna unguiculata (L.) Walp.) Cultivars

1Laboratoire Campus de Biotechnologies Végétales (LCBV), Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, BP 5005, Dakar, Senegal
2Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), LCM, Centre de Recherche de Bel Air, BP 1386, Dakar 18524, Senegal
3Institut de Recherche pour le Développement (IRD), UMR DIADE, 911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France

Received 21 May 2013; Accepted 27 June 2013

Academic Editors: B. Castiglioni, Y. H. Cheong, and M. Shoda

Copyright © 2013 Mahamadou Thiam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. E. Chinma, I. C. Alemede, and I. G. Emelife, “Physicochemical and functional properties of some Nigerian cowpea varieties,” Pakistan Journal of Nutrition, vol. 7, no. 1, pp. 186–190, 2008. View at Google Scholar · View at Scopus
  2. A. S. Langyintuo, J. Lowenberg-DeBoer, M. Faye et al., “Cowpea supply and demand in West and Central Africa,” Field Crops Research, vol. 82, no. 2-3, pp. 215–231, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. M. P. Timko, J. D. Ehlers, and P. A. Roberts, “Cowpea,” in Pulses, Sugar and Tuber Crops, Genome Mapping and Molecular Breeding in Plants, C. Kole, Ed., vol. 3, pp. 49–67, Springer, Berlin, Germany, 2007. View at Google Scholar
  4. M. P. Timko and B. B. Singh, “Cowpea, a multifunctional legume,” in Genomics of Tropical Crop Plants, P. H. Moore and R. Ming, Eds., pp. 227–258, Springer, New York, NY, USA, 2008. View at Google Scholar
  5. E. Boufroy, Analyse Éco-Physioloque Et Agronomique Des Perspectives D'Amélioration De La proDuction De Semences De Niébé Au Sénégal, Mémoire de DEA; ENSAM, Montpellier, France, 1994.
  6. N. Cissé and A. E. Hall, Traditional Cowpea in Senegal, A Case Study, 2003.
  7. K. O. Rachie and L. M. Roberts, “Grain legumes of the lowland tropics,” Advances in Agronomy, vol. 26, pp. 1–132, 1974. View at Publisher · View at Google Scholar · View at Scopus
  8. I. O. Akinyele, A. O. Onigbinde, M. A. Hussain, and A. Omololu, “Physicochemical characteristics of 18 cultivars of Nigerian cowpeas (V.unguiculata) and their cooking properties,” Journal of Food Science, vol. 51, no. 6, pp. 1483–1485, 1986. View at Google Scholar
  9. FAOSTAT, , 2004, http://faostat.fao.org/.
  10. DSDIA/DAPS/MAE, “Résultats définitifs de la campagne agricole 1997/1998 à 2002/2003. Récaputilatif des cultures industrielles et autres cultures,” Sénégal, 3e version du 24/03/2003, 2003.
  11. T. Yamaguchi and E. Blumwald, “Developing salt-tolerant crop plants: challenges and opportunities,” Trends in Plant Science, vol. 10, no. 12, pp. 615–620, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. Food Agriculture Organization, FAO land and plant nutrition management service, http://www.fao.org/ag/agl/agll/spush/, 2008.
  13. R. Munns and M. Tester, “Mechanisms of salinity tolerance,” Annual Review of Plant Biology, vol. 59, pp. 651–681, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Levigneron, F. Lopez, G. Vansuyt, P. Berthomieu, P. Fourcroy, and F. Casse-Delbart, “Les plantes face au stress salin,” Cahiers Agricultures, vol. 4, no. 4, pp. 263–227, 1995. View at Google Scholar
  15. P. M. Hasegawa, R. A. Bressan, J.-K. Zhu, and H. J. Bohnert, “Plant cellular and molecular responses to high salinity,” Annual Review of Plant Biology, vol. 51, pp. 463–499, 2000. View at Google Scholar · View at Scopus
  16. P. Rengasamy, “Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview,” Australian Journal of Experimental Agriculture, vol. 42, no. 3, pp. 351–361, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. A. E. Klar, A Água No Sistema Solo-Planta-Atmosfer, Nobel, São Paulo, Brazil, 1984.
  18. B. F. Dantas, L. De Sáribeiro, and C. A. Aragão, “Physiological response of cowpea seeds to salinity stress,” Revista Brasileira De Sementes, vol. 27, no. 1, pp. 144–148, 2005. View at Google Scholar
  19. B. Murillo-Amador, E. Troyo-Diéguez, J. L. García-Hernández et al., “Effect of NaCl salinity in the genotypic variation of cowpea (Vigna unguiculata) during early vegetative growth,” Scientia Horticulturae, vol. 108, no. 4, pp. 423–431, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. G. P. Kajal and V. R. Rao, “Effect of simulated water stress on the physiology of leaf senescence in three genotypes of cowpea (Vigna unguiculata (L.) Walp),” Indian Journal of Plant Physiology, vol. 12, no. 2, pp. 138–145, 2007. View at Google Scholar
  21. C. Chen, C. Tao, H. Peng, and Y. Ding, “Genetic analysis of salt stress responses in asparagus bean (Vigna unguiculata (L.) ssp. sesquipedalis Verdc.),” Journal of Heredity, vol. 98, no. 7, pp. 655–665, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. M. M. Hussein, L. K. Balbaa, and M. S. Gaballah, “Developing a salt tolerant cowpea using alpha tocopherol,” Journal of Applied Sciences Research, vol. 3, no. 10, pp. 1234–1239, 2007. View at Google Scholar
  23. K. M. Tawfik, “Evaluating the use of rhizobacterin on cowpea plants grown under salt stress,” Research Journal of Agriculture and Biological Sciences, vol. 4, no. 1, pp. 26–33, 2008. View at Google Scholar
  24. A. E. Hall and C. A. Frate, Blackeye Bean Production in California, University of California, Division of Agricultural Science, Publications, 1996.
  25. R. Serrano, J. M. Mulet, G. Rios et al., “A glimpse of the mechanisms of ion homeostasis during salt stress,” Journal of Experimental Botany, vol. 50, pp. 1023–1036, 1999. View at Google Scholar · View at Scopus
  26. T. J. Flowers, “Improving crop salt tolerance,” Journal of Experimental Botany, vol. 55, no. 396, pp. 307–319, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Wahid, M. Hameed, and E. Rasul, “Salt Injury symptom, changes in nutrient and pigment composition and yield characteristics of mungbean,” International Journal of Agriculture and Biology, vol. 6, no. 6, pp. 1143–1145, 2004. View at Google Scholar
  28. P. Saha, P. Chatterjee, and A. K. Biswas, “NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata l. wilczek),” Indian Journal of Experimental Biology, vol. 48, no. 6, pp. 593–600, 2010. View at Google Scholar · View at Scopus
  29. J. K. Zhu, “Plant salt tolerance,” Trends in Plant Science, vol. 6, no. 2, pp. 66–71, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Miller, N. Suzuki, S. Ciftci-Yilmaz, and R. Mittler, “Reactive oxygen species homeostasis and signalling during drought and salinity stresses,” Plant, Cell and Environment, vol. 33, no. 4, pp. 453–467, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. P. D. Hare, W. A. Cress, and J. Van Staden, “Dissecting the roles of osmolyte accumulation during stress,” Plant, Cell and Environment, vol. 21, no. 6, pp. 535–553, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. T. H. H. Chen and N. Murata, “Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes,” Current Opinion in Plant Biology, vol. 5, no. 3, pp. 250–257, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Munns, “Genes and salt tolerance: bringing them together,” New Phytologist, vol. 167, no. 3, pp. 645–663, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Roudani, Physiologie Comparée De Deux Espèces De Blé En Relation Avec Les Conditions De Nutrition. Métabolisme Racinaire En Milieu Salé, Thèse d'Université en Sciences Biologiques, Université de Tunis II, 1996.
  35. N. Cissé, S. Thiaw, and M. Ndiaye, Guide De La Production Du Niébé, brochure, Institut Sénégalais de Recherches Agronomiques (ISRA), Dakar, Sénégal, 1996.
  36. A. E. Hall, N. Cisse, S. Thiaw et al., “Development of cowpea cultivars and germplasm by the Bean/Cowpea CRSP,” Field Crops Research, vol. 82, no. 2-3, pp. 103–134, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. F. A. Badiane, B. S. Gowda, N. Cissé, D. Diouf, O. Sadio, and M. P. Timko, “Genetic relationship of cowpea (Vigna unguiculata) varieties from Senegal based on SSR markers,” Genetic and Molecular Research, vol. 11, no. 1, pp. 292–304, 2012. View at Google Scholar
  38. R. A. Viégas, A. R. B. Melo, and J. A. G. Silveira, “Nitrate reductase activity and proline accumulation in cashew (Anacardium occidentale L.) in response to salt (NaCl) shock,” Revista Brasileira De Fisiologia Vegetal, vol. 11, no. 1, pp. 21–28, 1999. View at Google Scholar
  39. D. Côme, “Problèmes de terminologie posés par la germination et ses obstacles,” Bulletin De La Société Française De Physiologie Végétale, vol. 14, no. 1, pp. 3–9, 1968. View at Google Scholar
  40. T. Murashige and F. Skoog, “A revised medium for rapid growth and bioassays, with tobacco tissue culture,” Physiologia Plantarum, vol. 15, no. 3, pp. 473–497, 1962. View at Google Scholar
  41. D. I. Arnon, “Cooper enzymes in isolated chloroplasts,” Plant Physiology, vol. 24, pp. 1–15, 1949. View at Google Scholar
  42. P. Monneveux and M. Nemmar, “Contribution à l'étude de la résistance à la sécheresse chez le blé tendre (Triticum aestivum L.) et chez le blé dur (Triticum durum Desf.): étude de l'accumulation de la proline au cours du cycle de développement,” Agronomie, vol. 6, pp. 583–590, 1986. View at Google Scholar
  43. R. Development Core Team, A Language and Environment For Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2011, http://www.R-project.org.
  44. H. J. Bohnert, D. E. Nelson, and R. G. Jensen, “Adaptations to environmental stresses,” Plant Cell, vol. 7, no. 7, pp. 1099–1111, 1995. View at Publisher · View at Google Scholar · View at Scopus
  45. F. E. Prado, C. Boero, M. Gallardo, and J. A. González, “Effect of NaCl on germination, growth, and soluble sugar content in Chenopodium quinoa Willd. seeds,” Botanical Bulletin of Academia Sinica, vol. 41, no. 1, pp. 27–34, 2000. View at Google Scholar · View at Scopus
  46. E. G. Padilla, R. C. Lopez Sanchez, B. Eichler-Loebermann, M. Fernandez-Pascual, K. T. Barrero, and L. A. Martinez, “Salt stress affects on cowpea (Vigna unguiculata L. Walp) varieties at different growing stages,” in Conference of International Research on Food Security, National Resource Management and Rural Development, University of Hamburg, October 2009.
  47. P. Botía, M. Carvajal, A. Cerdá, and V. Martínez, “Response of eight Cucumis melo cultivars to salinity during germination and early vegetative growth,” Agronomie, vol. 18, no. 8-9, pp. 503–513, 1998. View at Google Scholar · View at Scopus
  48. P. K. Gill, A. D. Sharma, P. Singh, and S. S. Bhullar, “Changes in germination, growth and soluble sugar contents of Sorghum bicolor (L.) Moench seeds under various abiotic stresses,” Plant Growth Regulation, vol. 40, no. 2, pp. 157–162, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. H. J. Bohnert, R. G. Jensen, T. J. Flowers, and A. R. Yeo, “Metabolic engineering for increased salt tolerance—the next step,” Australian Journal of Plant Physiology, vol. 23, no. 5, pp. 661–667, 1996. View at Google Scholar · View at Scopus
  50. IITA, “Cowpea,” http://www.iita.org/cms/details/cereal_legumesaspx?=a86&2=63, 2007.
  51. L. Panet, l. Holderbach, and B. Djemiah, “Influence des différentes concentrations en sel des eaux d'irrigation sur la croissance du riz,” Les AnnaLes De L'INRAT, vol. 32, pp. 1–13, 1959. View at Google Scholar
  52. R. Kingsbury and W. Epstein, “Selection for salt resistant spring wheat,” Crop Science, vol. 24, no. 2, pp. 310–315, 1984. View at Google Scholar
  53. J. Dvorak and K. Ross, “Expression of tolerance of Na., K., Mg2+, CI-, and SO- ions and sea water in the amphiploid of Triticum aestivum x Elytrigia elongate,” Crop Science, vol. 26, no. 4, pp. 658–660, 1986. View at Google Scholar
  54. A. A. Yeo and T. J. Flowers, “Mechanisms of salinity resistance in rice and their role as physiological criteria in plant breeding,” in SalInity Tolerance In Plants. Strategies For Crop Improvement, R. C. Stapes and G. A. Toennienssen, Eds., vol. 177, pp. 151–170, Wiley, New York, NY, USA, 1986. View at Google Scholar
  55. M. E. Mezni, E. Bizid, and M. Harnza, “Effets de la salinité des eaux d'irrigation sur la survie et la croissance de trois cultivars de luzerne pérenne,” Fourrages, vol. 158, pp. 169–178, 1999. View at Google Scholar
  56. T. R. Camara, L. Willadino, A. M. Torné, and M. A. Santos, “Efeito do estresse salino e da prolina exógena em calos de milho,” Revista Brasileira De Fisiologia Vegetal, vol. 12, no. 2, pp. 146–155, 2000. View at Google Scholar
  57. B. Murillo-Amador, E. Troyo-Dieguez, H. G. Jones, F. Ayala-Chairez, C. L. Tinoco-Ojanguren, and A. Lopez-Corte's, “Screening and classification of cowpea genotypes for salt tolerance during germination,” Phyton, vol. 67, pp. 71–84, 2000. View at Google Scholar
  58. E. Brugnoli and O. Björkman, “Growth of cotton under continuous salinity stress: influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy,” Planta, vol. 187, no. 3, pp. 335–347, 1992. View at Publisher · View at Google Scholar · View at Scopus
  59. N. Bernstein, A. Lauchli, and W. K. Silk, “Kinematics and dynamics of sorghum (Sorghum bicolor L.) leaf development at various Na/Ca salinities. I.Elongation growth,” Plant Physiology, vol. 103, no. 4, pp. 1107–1114, 1993. View at Google Scholar · View at Scopus
  60. H. Evelin, R. Kapoor, and B. Giri, “Arbuscular mycorrhizal fungi in alleviation of salt stress: a review,” Annals of Botany, vol. 104, no. 7, pp. 1263–1280, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. R. Gautheret, Effet du chlorure de sodium sur la croissance et l'alimentation minérale de citrus aurentium L. (bigaradier) et de l'hybride Poncirus trifoliata citru sinensis, vol. 292, Compte Rendu.de l'Académie des Sciences de Paris, 1981.
  62. M. Pessarakli, “Dry matter yield, nitrogen-15 absorption, and water uptake by green bean under sodium chloride stress,” Crop Science, vol. 31, pp. 1633–1640, 1991. View at Google Scholar
  63. M. J. Sanchez-blanco, M. Bolarin, J. J. Alarcon, and A. Torrecilas, “Salinity effect on water relations in Lycoperscion esculentum and its wild salt-tolerant relative species L.penneli,” Physiologia Plantarum, vol. 83, pp. 269–274, 1991. View at Google Scholar
  64. J. LIyod, P. Kriedemann, and D. Aspinall, “Contrasts between citrus species in reponse to salinization: an analysis of photosynthesis and water relation for different rootstock-scion combination,” Physiologia Plantarum, vol. 78, no. 2, pp. 236–246, 1990. View at Google Scholar
  65. M. Nieves, D. Riuz, and A. Cedra, “Influence of rootstock-scion combination in Lemon trees salt tolerance,” in Proceedings of International Society of Citriculture, pp. 387–390, Acireale, Italy, 1991.
  66. C. T. Chen, C. C. Li, and C. H. Kao, “Senescence of rice leaves XXXI. Changes of chlorophyll, protein, and polyamine contents and ethylene production during senescence of a chlorophyll-deficient mutant,” Journal of Plant Growth Regulation, vol. 10, no. 1, pp. 201–205, 1991. View at Publisher · View at Google Scholar · View at Scopus
  67. C. W. Glenn, D. K. Patten, and M. C. Drew, “Gas exchange and chlorophyll content of “Trif blue” rabbitey and “Sharp blue” southern highbush. Bluberry exposed to salinity and supplimental calcium,” Journal of the American Society For Horticultural Science, vol. 118, pp. 456–463, 1993. View at Google Scholar
  68. D. M. Orcutt and E. T. Nilsen, Physiology of Plants Under Stress, John Wiley & Sons, New York, NY, USA, 2000.
  69. D. Godde, “Adaptation of the photosynthetic apparatus to stress condition,” in Plant Response to Environmental Stresses, From phytohormones to Genome Reorganization, H. R. Lerner and M. Dekker, Eds., p. 499, 1999. View at Google Scholar
  70. U. Ortega, M. Duñabeitia, S. Menendez, C. Gonzalez-Murua, and J. Majada, “Effectiveness of mycorrhizal inoculation in the nursery on growth and water relations of Pinus radiata in different water regimes,” Tree Physiology, vol. 24, no. 1, pp. 65–73, 2004. View at Google Scholar · View at Scopus
  71. R. Guettouche, Contribution à l'identification des caractères morphophysiologiques d'adaptation à la sécheresse chez le blé dur (Triticum durum Desf) [Ph.D. Thèse de diplôme d'agronomie approfondie], ENSA-Montpellier, France, 1990.
  72. E. Tavakkoli, F. Fatehi, S. Coventry, P. Rengasamy, and G. K. McDonald, “Additive effects of Na+ and Cl- ions on barley growth under salinity stress,” Journal of Experimental Botany, vol. 62, no. 6, pp. 2189–2203, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. C. R. Steward, “Proline accumulation: biochemical aspects,” in The Physiology and Biochemistry of Drought Resistance in Plants, L. G. Paleg and D. Aspinal, Eds., Academic Press, Adelaide, Australia, 1981. View at Google Scholar
  74. J. H. Venekamp, “Regulation of cytosol acidity in plants under conditions of drought,” Physiologia Plantarum, vol. 76, no. 1, pp. 112–117, 1989. View at Google Scholar
  75. J. V. Silva, C. F. De Lacerda, P. H. A. Da Costa, J. E. Filho, E. G. Filho, and J. T. Prisco, “Physiological responses of NaCl stressed cowpea plants grown in nutrient solution supplemented with CaCl2,” Brasilian Journal of Plant Physiology, vol. 15, no. 2, pp. 99–105, 2003. View at Google Scholar · View at Scopus