Table of Contents
ISRN Biotechnology
Volume 2013, Article ID 394305, 6 pages
Research Article

Thermostable Alkaline Phytase from Alcaligenes sp. in Improving Bioavailability of Phosphorus in Animal Feed: In Vitro Analysis

1Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari, Tamil Nadu 629 502, India
2P. G. Department of Microbiology, Ayya Nadar Janaki Ammal College, Sivakasi, Tamil Nadu 626 124, India
3International Centre for Nanobiotechnology, Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamil Nadu 629 502, India

Received 31 December 2012; Accepted 17 January 2013

Academic Editors: H. S. Garcia, G. Ladics, C. D. Murphy, S. Pan, H. Stamatis, and A. Trincone

Copyright © 2013 Ponnuswamy Vijayaraghavan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A bacterial isolate, Alcaligenes sp. secreting phytase (EC, was isolated and characterized. The optimum conditions for the production of phytase included a fermentation period of 96 h, pH 8.0, and the addition of 1% (w/v) maltose and 1% (w/v) beef extract to the culture medium. This enzyme was purified to homogeneity and had an apparent molecular mass of 41 kDa. The optimum pH range and temperature for the activity of phytase were found to be 7.0-8.0 and 60°C, respectively. This enzyme was strongly inhibited by 0.005 M of Mn2+, Mg2+, and Zn2+. In vitro studies revealed that the phytase from Alcaligenes sp. released inorganic phosphate from plant phytates. Phytase released 1930 ± 28, 1740 ± 13, 1050 ± 31, 845 ± 7, 1935 ± 32, and 1655 ± 21 mg inorganic phosphate/kg plant phytates, namely, chick pea, corn, green pea, groundnut, pearl pea, and chick feed, respectively.