Table of Contents
ISRN Software Engineering
Volume 2013 (2013), Article ID 404525, 15 pages
http://dx.doi.org/10.1155/2013/404525
Review Article

Workflow Systems for Science: Concepts and Tools

ICAR-CNR and University of Calabria, 87036 Rende, Italy

Received 3 December 2012; Accepted 23 December 2012

Academic Editors: J. Cao, B. C. Lai, and K. Thramboulidis

Copyright © 2013 Domenico Talia. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Workflow Management Coalition, Terminology and Glossary, Document Number WFMC- TC-1011, Issue 3.0, 1999.
  2. D. Hollingsworth, Workflow Management Coalition Specification: The Workflow Reference Model, Document Number TC00-1003, v. 1.1, 1995.
  3. S. Jablonski and C. Bussler, Workflow Management: Modeling Concepts, Architecture and Implementation, Thomson International Computer Press, 1996.
  4. P. Grefen and R. N. Remmerts De Vries, “A reference architecture for workflow management systems,” Data and Knowledge Engineering, vol. 27, no. 1, pp. 31–57, 1998. View at Google Scholar · View at Scopus
  5. L. Liu, C. Pu, and D. D. Ruiz, “A systematic approach to flexible specification, composition, and restructuring of workflow activities,” Journal of Database Management, vol. 15, no. 1, pp. 1–40, 2004. View at Google Scholar · View at Scopus
  6. C. Lin and S. Lu, “Architectures of workflow management systems: a survey,” Tech. Rep. TR-SWR-01-2008, 2008. View at Google Scholar
  7. D. Georgakopoulos, M. Hornick, and A. Sheth, “An overview of workflow management: from process modeling to workflow automation infrastructure,” Distributed and Parallel Databases, vol. 3, no. 2, pp. 119–153, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Bowers, B. Ludaescher, A. Ngu, and T. Critchlow, “Enabling scientific workflow reuse through structured composition of dataflow and control-flow,” in Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW '06), 2006.
  9. S. S. Sahoo and A. Sheth, “Provenir ontology: towards a framework for eScience provenance management,” in Proceedings of the Microsoft eScience Workshop, Pittsburgh, Pa, USA, October 2009.
  10. G. Bell, T. Hey, and A. Szalay, “Beyond the data deluge,” Science, vol. 323, no. 5919, pp. 1297–1298, 2009. View at Publisher · View at Google Scholar
  11. E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and e-Science: an overview of workflow system features and capabilities,” Future Generation Computer Systems, vol. 25, no. 5, pp. 528–540, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Sonntag, D. Karastoyanova, and E. Deelman, “Bridging the gap between business and scientific workflows: humans in the loop of scientific workflows,” in Proceedings of the 6th IEEE International Conference on e-Science (eScience '10), pp. 206–213, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Yu and R. Buyya, “A taxonomy of scientific workflow systems for grid computing,” SIGMOD Record, vol. 34, no. 3, pp. 44–49, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Al-Shakarchi, P. Cozza, A. Harrison et al., “Distributing workflows over a ubiquitous P2P network,” Scientific Programming, vol. 15, no. 4, pp. 269–281, 2007. View at Google Scholar · View at Scopus
  15. K. Ostrowski, K. Birman, and D. Dolev, “Extensible architecture for high-performance, scalable, reliable publish-subscribe eventing and notification,” International Journal of Web Services Research, vol. 4, no. 4, pp. 18–58, 2007. View at Google Scholar · View at Scopus
  16. A. Lathers, M. H. Su, A. Kulungowski et al., “Enabling parallel scientific applications with workflow tools,” in Proceedings of the Challenges of Large Applications in Distributed Environments (CLADE '06), pp. 55–60, June 2006. View at Scopus
  17. I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, Workflows for e-Science: Scientific Workflows for Grids, Springer, London, UK, 2007.
  18. M. Mirto, M. Passante, and G. Aloisio, “The ProGenGrid virtual laboratory for bioinformatics,” in Proceedings of the IEEE 25th International Symposium on Computer-Based Medical Systems (CBMS '12), 2012.
  19. M. Cannataro, A. Guzzo, C. Comito, and P. Veltri, “Ontology-based design of bioinformatics workflows on PROTEUS,” Journal of Digital Information Management, vol. 2, no. 1, pp. 87–92, 2004. View at Google Scholar
  20. W. M. P. Van der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and A. P. Barros, “Workflow patterns,” Distributed and Parallel Databases, vol. 14, no. 1, pp. 5–51, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. Condor Team, DAGMan: A Directed Acyclic Graph Manager, July 2005, http://research.cs.wisc.edu/htcondor/dagman/.
  22. M. Litzkow, M. Livny, and M. Mutka, “Condor—a hunter of idle workstations,” in Proceedings of the 8th International Conference on Distributed Computing Systems, pp. 104–111, IEEE Computer Society, New York, NY, USA, 1988.
  23. P. Couvares, T. Kosar, A. Roy, J. Weber, and K. Wenger, “Workflow management in Condor,” in Workflows for e-Science, pp. 357–375, Springer, New York, NY, USA, 2007. View at Google Scholar
  24. M. Mirto, M. Passante, and G. Aloisio, “A grid meta scheduler for a distributed interoperable workflow management system,” in Proceedings of the IEEE 23rd International Symposium on Computer-Based Medical Systems (CBMS '10), pp. 138–143, IEEE Computer Society, Washington, DC, USA, 2010.
  25. L. Zhang, J. Zhang, and H. Cai, Services Computing, Springer, 2007.
  26. T. Erl, Service-Oriented Architecture Concepts, Technology and Design, Pearson Education, 2005.
  27. M. Vouk and M. Singh, “Quality of service and scientific workflows,” in Proceedings of the Working Conference on Quality of Numerical Software, pp. 77–89, 1996.
  28. A. Arsanjani, L. J. Zhang, M. Ellis, A. Allam, and K. Channabasavaiah, “S3: a service-oriented reference architecture,” IT Professional, vol. 9, no. 3, pp. 10–17, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Lin, S. Lu, Z. Lai et al., “Service-oriented architecture for VIEW: a visual scientific workflow management system,” in Proceedings of IEEE International Conference on Services Computing (SCC '08), pp. 335–342, 2008.
  30. Y. Gil, V. Ratnakar, E. Deelman, G. Mehta, and J. Kim, “Wings for Pegasus: creating large scale scientific applications using semantic representations of computational workflows,” in Proceedings of the 19th Innovative Applications of Artificial Intelligence Conference (IAAI '07), 2007.
  31. G. Juve and E. Deelman, “Resource provisioning options for large-scale scientific workflows,” in Proceedings of the 3rd International Workshop on Scientific Workflows and Business Workflow Standards in e-Science, Indianapolis, Ind, USA, 2008.
  32. A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou et al., “Developing scientific workflows from heterogeneous services,” SIGMOD Record, vol. 35, no. 2, pp. 19–25, 2006. View at Google Scholar · View at Scopus
  33. J. A. Miller, D. Palaniswami, A. P. Sheth, K. J. Kochut, and H. Singh, “WebWork: METEOR2's web-based workflow management system,” Journal of Intelligent Information Systems, vol. 10, no. 2, pp. 185–213, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Alonso, R. Günthör, M. Kamath, D. Agrawal, A. Abbadi, and C. Mohan, “Exotica/FMDC: a workflow management system for mobile and disconnected clients,” Distributed and Parallel Databases, vol. 4, no. 3, pp. 229–247, 1996. View at Google Scholar
  35. F. Leymann and D. Roller, “Business process management with FlowMark,” in Proceedings of the IEEE Computer Society International Conference (COMPCON '94), pp. 230–234, 1994.
  36. B. Ludäscher, I. Altintas, C. Berkley et al., “Scientific workflow management and the Kepler system,” Concurrency Computation Practice and Experience, vol. 18, no. 10, pp. 1039–1065, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T. Vo, “VisTrails: visualization meets data management,” in Proceedings of the ACM International Conference on Management of Data (SIGMOD '06), pp. 745–747, June 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Zhao, M. Hategan, B. Clifford et al., “Swift: fast, reliable, loosely coupled parallel computation,” in Proceedings of International Workshop on Scientific Workflows (SWF '07), pp. 199–206, July 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Majithia, M. Shields, I. Taylor, and I. Wang, “Triana: a graphical web service composition and execution toolkit,” in Proceedings of IEEE International Conference on Web Services (ICWS '04), pp. 514–521, July 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Chebotko, C. Lin, X. Fei et al., “VIEW: a visual scientific workflow management system,” in Proceedings of International Workshop on Scientific Workflows (SWF '07), pp. 207–208, July 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Kacsuk and G. Sipos, “Multi-Grid, multi-user workflows in the P-GRADE Grid portal,” Journal of Grid Computing, vol. 3, no. 3-4, pp. 221–238, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva, and H. Vo, “Managing the evolution of dataflows with visTrails,” in Proceedings of IEEE Workshop on Workflow and Data Flow for Scientific Applications, SciFlow, 2006.
  43. T. Glatard, G. Sipos, J. Montagnat, Z. Farkas, and P. Kacsuk, “Workflow-level parametric study support by MOTEUR and the P-GRADE portal,” in Workflows for e-Science, pp. 279–299, Springer, New York, NY, USA, 2007. View at Google Scholar
  44. Web Services Business Process Execution Language, Version 2.0, Primer, May 2007, https://www.oasis-open.org/committees/download.php/23964/wsbpel-v2.0-primer.htm.
  45. T. Fletcher, C. Ltd, P. Furniss, A. Green, and R. Haugen, “BPEL and Business Transaction Management: Choreology Submission to OASIS WS-BPELTechnical Committee,” Published on Web.
  46. W. Emmerich, B. Butchart, L. Chen, B. Wassermann, and S. L. Price, “Grid service orchestration using the Business Process Execution Language (BPEL),” Journal of Grid Computing, vol. 3, no. 3-4, pp. 283–304, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. M. B. Juric, Business Process Execution Language for Web Services BPEL and BPEL4WS, Packt Publishing, 2nd edition, 2006.
  48. M. Alt, A. Hoheisel, H.-W. Pohl, and S. Gorlatch, “A grid workflow language using high-level petri nets,” in Proceedings of the 6th International Conference on Parallel Processing and Applied Mathematics (PPAM '05), R. Wyrzykowski, J. Dongarra, N. Meyer, and J. Wasniewski, Eds., vol. 3911 of Lecture Notes in Computer Science, pp. 715–722, Springer, New York, NY, USA, 2006.
  49. Z. Guan, F. Hern , and P. Bangalore, Grid-flow: a grid-enabled scientific workflow system with a petri net-based interface [Ph.D. thesis], University of Alabama at Birmingham, 2006.
  50. M. Atay, A. Chebotko, D. Liu, S. Lu, and F. Fotouhi, “Efficient schema-based XML-to-Relational data mapping,” Information Systems, vol. 32, no. 3, pp. 458–476, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Chebotko, M. Atay, S. Lu, and F. Fotouhi, “XML subtree reconstruction from relational storage of XML documents,” Data and Knowledge Engineering, vol. 62, no. 2, pp. 199–218, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Andrews, F. Curbera, H. Dholakia et al., “Business process execution language for web services,” version 1.1, 2003.
  53. F. Neubauer, A. Hoheisel, and J. Geiler, “Workflow-based Grid applications,” Future Generation Computer Systems, vol. 22, no. 1-2, pp. 6–15, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. G. von Laszewski and M. Hategan, “Java CoG Kit Karajan/Gridant workflow guide,” Tech. Rep., Argonne National Laboratory, Argonne, Ill, USA, 2005. View at Google Scholar
  55. G. von Laszewski, M. Hategan, and D. Kodeboyina, “Java CoG kit workflow,” in Workflows for e-Science, pp. 143–166, Springer, New York, 2007. View at Google Scholar
  56. T. Oinn, M. Addis, J. Ferris et al., “Taverna: a tool for the composition and enactment of bioinformatics workflows,” Bioinformatics, vol. 20, no. 17, pp. 3045–3054, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Oinn, M. Greenwood, M. Addis et al., “Taverna: lessons in creating a workflow environment for the life sciences,” Concurrency Computation Practice and Experience, vol. 18, no. 10, pp. 1067–1100, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. I. Taylor, M. Shields, I. Wang, and O. Rana, “Triana, applications within Grid computing and peer to peer environments,” Journal of Grid Computing, vol. 1, pp. 199–217, 2004. View at Google Scholar
  59. I. Taylor, M. Shields, I. Wang, and A. Harrison, “Visual grid workflow in Triana,” Journal of Grid Computing, vol. 3, no. 3-4, pp. 153–169, 2005. View at Google Scholar
  60. I. Taylor, E. Al-Shakarchi, and S. D. Beck, “Distributed audio retrieval using Triana, DART,” in Proceedings of the International Computer Music Conference (ICMC '06), pp. 716–722, New Orleans, Lo, USA, November 2006.
  61. E. Deelman, G. Singh, M. H. Su et al., “Pegasus: a framework for mapping complex scientific workflows onto distributed systems,” Scientific Programming, vol. 13, no. 3, pp. 219–237, 2005. View at Google Scholar · View at Scopus
  62. A. Nagavaram, G. Agrawal, M. Freitas, G. Mehta, R. Mayani, and E. Deelman, “A cloud-based dynamic workflow for mass spectrometry data analysis,” in Proceedings of the 7th IEEE International Conference on e-Science (e-Science '11), December 2011.
  63. J. S. Vöckler, G. Juve, E. Deelman, M. Rynge, and B. Berriman, “Experiences using cloud computing for a scientific workflow application,” in Proceedings of the 2nd International Workshop on Scientific Cloud Computing (ScienceCloud '11), pp. 15–24, June 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost- and deadline-constrained provisioning for scientific workflow wnsembles in IaaS clouds,” in Proceedings of the 24th IEEE/ACM International Conference on Supercomputing (SC '12), 2012.
  65. G. Juve, E. Deelman, B. Berriman, B. P. Berman, and P. Maechling, “An evaluation of the cost and performance of scientific workflows on Amazon EC2,” Journal of Grid Computing, vol. 10, no. 1, pp. 5–21, 2012. View at Google Scholar
  66. I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, and S. Mock, “Kepler: an extensible system for design and execution of scientific workflows,” in Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM '04), pp. 423–424, IEEE Computer Society, New York, NY, USA, 2004.
  67. J. H. Porter, P. C. Hanson, and C.-C. Lin, “Staying afloat in the sensor data deluge,” Trends in Ecology and Evolution, vol. 27, no. 2, pp. 121–129, 2012. View at Google Scholar
  68. T. Fahringer, R. Prodan, R. Duan et al., “ASKALON: a grid application development and computing environment,” in Proceedings of the 6th IEEE/ACM International Workshop on Grid Computing, pp. 122–131, November 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. T. Fahringer, Q. Jun, and S. Hainzer, “Specification of Grid workflow applications with AGWL: an abstract Grid workflow language,” in Proceedings of IEEE International Symposium on Cluster Computing and the Grid (CCGrid '05), pp. 676–685, May 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Congiusta, G. Greco, A. Guzzo et al., “A data mining-based framework for grid workflow management,” in Proceedings of the 5th International Conference on Quality Software (QSIC '05), pp. 349–356, IEEE Computer Society Press, September 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. D. Talia, P. Trunfio, and O. Verta, “Weka4WS: a WSRF-enabled Weka toolkit for distributed data mining on Grids,” in Proceedings of the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases, pp. 309–320, Porto, Portugal, 2005.
  72. M. Lackovic, D. Talia, and P. Trunfio, “A framework for composing knowledge discovery workflows in grids,” in Foundations of Computational Intelligence, A. Abraham, A. Hassanien, A. Carvalho, and V. Snášel, Eds., vol. 6 of Data Mining Theoretical Foundations and Applications, Studies in Computational Intelligence, pp. 345–369, Springer, 2009. View at Google Scholar
  73. D. Talia, P. Trunfio, and O. Verta, “The Weka4WS framework for distributed data mining in service-oriented Grids,” Concurrency Computation Practice and Experience, vol. 20, no. 16, pp. 1933–1951, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Hoheisel, “User tools and languages for graph-based Grid workflows,” Concurrency Computation Practice and Experience, vol. 18, no. 10, pp. 1101–1113, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. K. Jensen and G. Rozenberg, High-Level Petri Nets: Theory and Application, Springer, London, UK, 1991.
  76. R. Tolosana-Calasanz, J. A. Banares, O. F. Rana, P. Á lvarez, J. Ezpeleta, and A. Hoheisel, “Adaptive exception handling for scientific workflows,” Concurrency Computation Practice and Experience, vol. 22, no. 5, pp. 617–642, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. R. Tolosana-Calasanz, J. A. Bañares, P. Álvarez, J. Ezpeleta, and O. Rana, “An uncoordinated asynchronous checkpointing model for hierarchical scientific workflows,” Journal of Computer and System Sciences, vol. 76, no. 6, pp. 403–415, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. R. Valk, “Petri nets as token objects: an introduction to elementary object nets,” in Proceedings of the 19th International Conference on Application and Theory of Petri Nets (ICATPN '98), J. Desel and M. Silva, Eds., vol. 1420 of Lecture Notes in Computer Science, pp. 1–25, Springer, Lisbon, Portugal, June 1998.
  79. D. Gelernter, “Generative communication in Linda,” ACM Transactions on Programming Languages and Systems, vol. 7, no. 1, pp. 80–112, 1985. View at Google Scholar
  80. M. Feller, I. Foster, and S. Martin, “GT4 GRAM: a functionality and performance study,” in Proceedings of the TERAGRID Conference, Madison, Wis, USA, 2007.
  81. D. Talia and P. Trunfio, “How distributed data mining tasks can thrive as knowledge services,” Communications of the ACM, vol. 53, no. 7, pp. 132–137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. E. Cesario, M. Lackovic, D. Talia, and P. Trunfio, “Programming knowledge discovery workflows in service-oriented distributed systems,” Concurrency and Computation: Practice and Experience. In press.
  83. E. Cesario, M. Lackovic, D. Talia, and P. Trunfio, “Service-oriented data analysis in distributed computing systems,” in High Performance Computing: From Grids and Clouds to Exascale, I. Foster, W. Gentzsch, L. Grandinetti, and G. Joubert, Eds., pp. 225–245, IOS Press, Lansdale, Pa, USA, 2011. View at Google Scholar
  84. A. Chebotko, X. Fei, C. Lin, S. Lu, and F. Fotouhi, “Storing and querying scientific workflow provenance metadata using an RDBMS,” in Proceedings of the 3rd IEEE International Conference on E-Science and Grid Computing, pp. 611–618, December 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. I. Altintas , O. Barney, and E. Jaeger-Frank, “Provenance collection support in the kepler scientific workflow system,” in Proceedings of the International Provenance and Annotation Workshop (IPAW '06), pp. 118–132, 2006.
  86. E. Deelman and A. Chervenak, “Data management challenges of data-intensive scientific workflows,” in Proceedings of the 8th IEEE International Symposium on Cluster Computing and the Grid (CCGRID '08), pp. 687–692, May 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. Open Provenance Model, 2009, http://twiki.ipaw.info/bin/view/OPM/WebHome.
  88. J. Yu and R. Buyya, “Scheduling scientific workflow applications with deadline and budget constraints using genetic algorithms,” Scientific Programming, vol. 14, no. 3-4, pp. 217–230, 2006. View at Google Scholar
  89. C. Anderson, “The end of theory: the data deluge makes the scientific method obsolete,” Wired, vol. 16, no. 7, 2008. View at Google Scholar
  90. G. Erbach, “Data-centric view in e-Science information systems,” Data Science Journal, vol. 5, pp. 219–222, 2006. View at Google Scholar
  91. Y. Gil, E. Deelman, M. Ellisman et al., “Examining the challenges of scientific workflows,” Computer, vol. 40, no. 12, pp. 24–32, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. D. Talia and P. Trunfio, Service-Oriented Distributed Knowledge Discovery, CRC Press, Boca Raton, Fla, USA, 2012.
  93. R. Bose and J. Frew, “Lineage retrieval for scientific dataprocessing: a survey,” ACM Computing Surveys, vol. 37, no. 1, pp. 1–28, 2005. View at Google Scholar
  94. L. Moreau, Concurrency and Computation: Practice and Experience, Special Issue on the First Provenance Challenge, 2008.
  95. C. Lin, S. Lu, X. Fei et al., “A reference architecture for Scientific workflow management systems and the VIEW SOA solution,” IEEE Transactions on Services Computing, vol. 2, no. 1, pp. 79–92, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. Y. Han, A. Sheth, and C. Bussler, “A taxonomy of adaptive workflow management,” in Proceedings of the Conference on Computer-Supported Cooperative Work (CSCW '98), Seattle, Wash, USA, 1998.
  97. T. Hey, S. Tansley, and K. Tolle, The Fourth Paradigm: Data-Intensive Scientific Discovery, Microsoft Research, Redmond, Wash, USA, 2009.
  98. M. Lackovic, D. Talia, R. Tolosana-Calasanz, J. A. Bañares, and O. F. Rana, “A taxonomy for the analysis of scientific workflow faults,” in Proceedings of the 2nd International Workshop on Workflow Management in Service and Cloud Computing (WMSC '10), in conjunction with (CSE '10), pp. 398–403, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. L. Ramakrishnan, D. Nurmi, A. Mandal et al., “VGrADS: enabling e-Science workflows on grids and clouds with fault tolerance,” in Proceedings of the ACM/IEEE International Conference on High Performance Computing and Communication (SC '09), November 2009.
  100. T. Samak, D. Gunter, M. Goode, E. Deelman, G. Juve, and F. Silva, “Failure analysis of distributed scientific workflows executing in the cloud,” in Proceedings of the 8th International Conference on Network and Service Management (CNSM '12), 2012.
  101. M. Kamath and K. Ramamritham, “Failure handling and coordinated execution of concurrent workflows,” in Proceedings of the 14th International Conference on Data Engineering (ICDE '98), pp. 334–341, IEEE Computer Society Washington, February 1998. View at Scopus
  102. R. Tolosana-Calasanz, M. Lackovic, O. Rana, J. Banares, and D. Talia, “Characterizing quality of resilience in scientific workflows,” in Proceedings of the 6th Workshop on Workflows in Support of Large-Scale Science, pp. 117–126, ACM, New York, NY, USA, November 2011.