Table of Contents
ISRN Computational Biology
Volume 2013, Article ID 428378, 4 pages
http://dx.doi.org/10.1155/2013/428378
Research Article

Molecular Docking and Quantum Mechanical Studies on Pelargonidin-3-Glucoside as Renoprotective ACE Inhibitor

1DBT-BIF Centre, Department of Biotechnology, Maharani Lakshmi Ammanni College for Women, Malleswarm, Bangalore, Karnataka 560012, India
2Department of Biotechnology, G.B. Pant Engineering College, Uttarakhand 246194, India
3DBT-BIF Centre, Department of Biotechnology, Kumaun University, Bhimtal Campus, Nainital, Uttrakhand 263136, India

Received 21 January 2013; Accepted 24 February 2013

Academic Editors: B. Oliva and A. Qiao

Copyright © 2013 Talambedu Usha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Moser, C. Rosendorff, and W. B. White, “Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers: is there a difference in response and any advantage to using them together in the treatment of hypertension?” Journal of Clinical Hypertension, vol. 10, no. 6, pp. 489–496, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. M. E. Marketou and P. E. Vardas, “Bradykinin in the treatment of arterial hypertension: friend or foe?” Hellenic Journal of Cardiology, vol. 53, pp. 91–94, 2012. View at Google Scholar
  3. S. Suissa, T. Hutchinson, J. M. Brophy, and A. Kezouh, “ACE-inhibitor use and the long-term risk of renal failure in diabetes,” Kidney International, vol. 69, no. 5, pp. 913–919, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Duboc, C. Meune, G. Lerebours, J. Y. Devaux, G. Vaksmann, and H. M. Bécane, “Effect of perindopril on the onset and progression of left ventricular dysfunction in Duchenne muscular dystrophy,” Journal of the American College of Cardiology, vol. 45, no. 6, pp. 855–857, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. “Marvin was used for drawing, displaying and characterizing chemical structures, substructures and reactions, Marvin 5.8.0 (324),” 2008, ChemAxon, http://www.chemaxon.com/.
  6. O. Trott and A. J. Olson, “Software news and update AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading,” Journal of Computational Chemistry, vol. 31, no. 2, pp. 455–461, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Rarey, B. Kramer, T. Lengauer, and G. Klebe, “A fast flexible docking method using an incremental construction algorithm,” Journal of Molecular Biology, vol. 261, no. 3, pp. 470–489, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. D. W. Ritchie and V. Venkatraman, “Ultra-fast FFT protein docking on graphics processors,” Bioinformatics, vol. 26, no. 19, Article ID btq444, pp. 2398–2405, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Bhattacharjee, T. Usha, S. Sadegh et al., “Computer aided screening of inhibitors to 5-α reductase type 2 for prostate,” Bioinformation, vol. 6, no. 7, pp. 262–265, 2011. View at Publisher · View at Google Scholar
  10. B. Bhattacharjee, R. M. Jayadeepa, R. Anantharamanan, S. S. Pillay, N. Kumari, and S. K. Middha, “Screening of novel inhibitors for MEK1 induced Breast Cancer-An Insilico Approach,” EMBnet Journal A, vol. 16, pp. 25–26, 2009. View at Google Scholar
  11. E. F. Pettersen, T. D. Goddard, C. C. Huang et al., “UCSF Chimera-a visualization system for exploratory research and analysis,” Journal of Computational Chemistry, vol. 25, no. 13, pp. 1605–1612, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. D. B. Turner, A. Rostami-Hodjegan, G. T. Tucker, and K. R. Yeo, “Prediction of non-specific hepatic microsomal binding from radily available physicochemical properties,” Drug Metabolism Reviews, vol. 38, no. 1, p. 162, 2006. View at Google Scholar
  13. E. L. Willighagen, N. Jeliazkova, B. Hardy, R. C. Grafström, and O. Spjuth, “Computational toxicology using the OpenTox application programming interface and Bioclipse,” BMC Research Notes, vol. 4, p. 487, 2011. View at Publisher · View at Google Scholar
  14. M. W. Schmidt, K. K. Baldridge, J. A. Boatz et al., “General atomic and molecular electronic structure system,” Journal of Computational Chemistry, vol. 14, no. 11, pp. 1347–1363, 1993. View at Publisher · View at Google Scholar
  15. http://www.chemissian.com/.
  16. Y. S. Moreno, G. S. Sánchez, D. R. Hernández et al., “Characterization of anthocyanin extracts from maize kernels,” Journal of Chromatography Science, vol. 43, no. 9, pp. 483–487, 2005. View at Google Scholar
  17. C. Felgines, O. Texier, C. Besson, B. Lyan, J. L. Lamaison, and A. Scalbert, “Strawberry pelargonidin glycosides are excreted in urine as intact glycosides and glucuronidated pelargonidin derivatives in rats,” British Journal of Nutrition, vol. 98, no. 6, pp. 1126–1131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Noda, T. Kaneyuki, A. Mori, and L. Packer, “Antioxidant activities of pomegranate fruit extract and its anthocyanidins: delphinidin, cyanidin, and pelargonidin,” Journal of Agricultural and Food Chemistry, vol. 50, no. 1, pp. 166–171, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. S. K. Middha and T. Usha, “An in vitro new vista to identify hypoglycemic activity,” International Journal of Fundamental and Applied Science, vol. 1, no. 2, pp. 27–29, 2012. View at Google Scholar
  20. T. Tanaka, G. I. Nonaka, and I. Nishioka, “Tannins and related compounds. C. Reaction of dehydrohexahydroxydiphenic acid esters with bases, and its application to the structure determination of pomegranate tannins, granatins A and B,” Chemical and Pharmaceutical Bulletin, vol. 38, no. 9, pp. 2424–2428, 1990. View at Google Scholar · View at Scopus
  21. L. Zhang, Q. Fu, and Y. Zhang, “Composition of anthocyanins in pomegranate flowers and their antioxidant activity,” Food Chemistry, vol. 127, no. 4, pp. 1444–1449, 2011. View at Publisher · View at Google Scholar · View at Scopus