Table of Contents
ISRN Metallurgy
Volume 2013, Article ID 429818, 5 pages
http://dx.doi.org/10.1155/2013/429818
Research Article

Electrochemical Fabrication of Niobium Silicon Alloys from Oxide Powder Mixtures

School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Haidian District, Beijing 100191, China

Received 14 January 2013; Accepted 31 January 2013

Academic Editors: Y. S. Chang, P. Lukac, A. Pinkerton, and Y.-d. Wang

Copyright © 2013 Fanke Meng and Huimin Lu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Singh and D. R. Behrendt, “Reactive melt infiltration of silicon-niobium alloys in microporous carbons,” Journal of Materials Research, vol. 9, pp. 1701–1708, 1994. View at Google Scholar
  2. C. L. Ma, A. Kasama, R. Tanaka, and S. Hanada, “Development of Nb-Nb-silicide in-situ composites,” Transactions of Metal Heat Treatment, vol. 21, p. 2, 2000. View at Google Scholar
  3. M. G. Mendiratta and D. M. Dimiduk, “Microstructures and mechanical behaviors of 2-phase niobium silicide-niobium alloys,” in Proceedings of the Material Research Society Symposia Proceeding, vol. 133, MRS, Pittsburgh, Pa, USA, 1989.
  4. W. Y. Kim, H. Tanaka, A. Kasama, and S. Hanada, “Microstructure and room temperature fracture toughness of Nbss/Nb5Si3 in situ composites,” Intermetallics, vol. 9, no. 9, pp. 827–834, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Y. Yan and D. J. Fray, “Production of niobium powder by direct electrochemical reduction of solid Nb2O5 in a eutectic CaCl2-NaCl melt,” Metallurgical and Materials Transactions B, vol. 33, pp. 685–693, 2002. View at Google Scholar
  6. T. Nohira, K. Yasuda, and Y. Ito, “Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon,” Nature Materials, vol. 2, no. 6, pp. 397–401, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Z. Chen, D. J. Fray, and T. W. Farthing, “Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride,” Nature, vol. 407, no. 6802, pp. 361–364, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. F. K. Meng and H. M. Lu, “Study on a new electrolysis technology of preparing high Nb bearing TiAl alloy from metal oxides,” in EPD Congress Proceedings, pp. 711–717, 2009.
  9. G. Z. Chen, E. Gordo, and D. J. Fray, “Direct electrolytic preparation of chromium powder,” Metallurgical and Materials Transactions B, vol. 35, pp. 223–233, 2004. View at Google Scholar
  10. F. Meng and H. Lu, “Direct electrochemical preparation of NbSi alloys from mixed oxide preform precursors,” Advanced Engineering Materials, vol. 11, no. 3, pp. 198–201, 2009. View at Publisher · View at Google Scholar
  11. A. J. M. Wood, R. C. Copcutt, G. Z. Chen, and D. J. Fray, “Electrochemical fabrication of nickel manganese gallium alloy powder,” Advanced Engineering Materials, vol. 5, no. 9, pp. 650–653, 2003. View at Publisher · View at Google Scholar
  12. K. Dring, R. Bhagat, M. Jackson, R. Dashwood, and D. Inman, “Direct electrochemical production of Ti-10W alloys from mixed oxide preform precursors,” Journal of Alloys and Compounds, vol. 419, no. 1-2, pp. 103–109, 2006. View at Publisher · View at Google Scholar · View at Scopus