Table of Contents
ISRN Biotechnology
Volume 2013 (2013), Article ID 450948, 10 pages
http://dx.doi.org/10.5402/2013/450948
Research Article

Simultaneous Extraction Optimization and Analysis of Flavonoids from the Flowers of Tabernaemontana heyneana by High Performance Liquid Chromatography Coupled to Diode Array Detector and Electron Spray Ionization/Mass Spectrometry

1Department of Biotechnology, Kumaraguru College of Technology, Coimbatore 641049, India
2Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5

Received 24 June 2012; Accepted 9 August 2012

Academic Editors: Y. H. Cheong, H. Kakeshita, W. A. Kues, and D. Pant

Copyright © 2013 Thiyagarajan Sathishkumar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Chan, “Some aspects of toxic contaminants in herbal medicines,” Chemosphere, vol. 52, no. 9, pp. 1361–1371, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. G. E. Trease and W. C. Evans, Pharmacognosy, ELBS, Bailliere Tindall, 12th edition, 1985.
  3. R. J. Molyneux, S. T. Lee, D. R. Gardner, K. E. Panter, and L. F. James, “Phytochemicals: the good, the bad and the ugly?” Phytochemistry, vol. 68, no. 22–24, pp. 2973–2985, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. B. H. Havsteen, “The biochemistry and medical significance of the flavonoids,” Pharmacology and Therapeutics, vol. 96, no. 2-3, pp. 67–202, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Ying and L. Ping-tao, “Apocynaceae,” in Flora Reipublicae Popularis Sinicae, vol. 63, pp. 1–249, 1977. View at Google Scholar
  6. L. S. Castro, F. F. Perazzo, and E. L. Maistro, “Genotoxicity testing of Ambelania occidentalis (Apocynaceae) leaf extract in vivo,” Genetics and Molecular Research, vol. 8, no. 2, pp. 440–447, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. G. R. Nambiar and K. Raveendran, “Indigenous medicinal plants scripted in Amarakosam,” American-Euresean Journal of Botany, vol. 1, pp. 68–72, 2008. View at Google Scholar
  8. S. Ignacimuthu, V. Duraipandiyan, and M. Ayyanar, “Antimicrobial activity of some ethnomedicinal plants used by Paliyar tribe from Tamil Nadu, India,” BMC Complementary and Alternative Medicine, vol. 6, article 35, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. S. G. Achar, N. Rajakumar, and M. B. Shivanna, “Ethno-medico-botanical knowledge of khare-vokkaliga community in Uttara Kannada district of Karnataka, India,” Journal of Complementary and Integrative Medicine, vol. 7, no. 1, pp. 1–18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Sati, H. Joshi, and A. B. Joshi, “Diuretic activity of ethanolic extract of Ervatamia heyneana roots,” The Pharma Review, pp. 148–150, 2009. View at Google Scholar
  11. T. Sathishkumar, R. Baskar, S. Shanmugam, P. Rajasekaran, S. Sadasivam, and V. Manikandan, “Optimization of flavonoids extraction from the leaves of Tabernaemontana heyneana Wall. using L16 Orthogonal design,” Nature and Science, vol. 6, no. 3, pp. 10–21, 2008. View at Google Scholar
  12. S. Sukumaran and A. D. S. Raj, “Medicinal plants of sacred groves in Kanyakumari district Southern Western Ghats,” Indian Journal of Traditional Knowledge, vol. 9, no. 2, pp. 294–299, 2010. View at Google Scholar · View at Scopus
  13. M. Herrero, P. J. Martín-Álvarez, F. J. Señoráns, A. Cifuentes, and E. Ibáñez, “Optimization of accelerated solvent extraction of antioxidants from Spirulina platensis microalga,” Food Chemistry, vol. 93, no. 3, pp. 417–423, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. D. Wu, X. Y. Jiang, Q. Y. Chen, and X. Q. Chen, “Comparison of techniques for the extraction of the hypotensive drugs geniposidic acid and geniposide from Eucommia Ulmoides,” Journal of the Iranian Chemical Society, vol. 4, no. 2, pp. 205–214, 2007. View at Google Scholar · View at Scopus
  15. X. Chen, L. J. Tang, Y. N. Sun, P. H. Qiu, and G. Liang, “Syntheses, characterization and antitumor activities of transition metal complexes with isoflavone,” Journal of Inorganic Biochemistry, vol. 104, no. 4, pp. 379–384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Zhishen, T. Mengcheng, and W. Jianming, “The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals,” Food Chemistry, vol. 64, no. 4, pp. 555–559, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. J. H. Adam, R. Omar, and C. C. Wilcock, “Phytochemical screening of flavonoids in three hybrids of Napenthes (Napenthaceae) and their putative parental species from Sarawak and Sabah,” Journal of Biological Sciences, vol. 2, no. 9, pp. 623–625, 2002. View at Publisher · View at Google Scholar
  18. M. C. Meena and V. Patni, “Isolation and identification of flavonoid, “Quercetin” from Citrullus colocynthis (Linn.) Schrad,” Asian Journal of Experimental Sciences, vol. 22, no. 1, pp. 137–142, 2008. View at Google Scholar
  19. J. P. Lai, Y. H. Lim, J. Su, H. M. Shen, and C. N. Ong, “Identification and characterization of major flavonoids and caffeoylquinic acids in three compositae plants by LC/DAD-APCI/MS,” Journal of Chromatography B, vol. 848, no. 2, pp. 215–225, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. D. L. Luthria, S. Mukhopadhyay, and A. L. Kwansa, “A systematic approach for extraction of phenolic compounds using parsley (Petroselinum crispum) flakes as a model substrate,” Journal of the Science of Food and Agriculture, vol. 86, no. 9, pp. 1350–1358, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Sultana, F. Anwar, and M. Ashraf, “Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts,” Molecules, vol. 14, no. 6, pp. 2167–2180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. R. C. Dutra, M. N. Leite, and N. R. Barbosa, “Quantification of phenolic constituents and antioxidant activity of Pterodon emarginatus vogel seeds,” International Journal of Molecular Sciences, vol. 9, no. 4, pp. 606–614, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. C. L. Lu, Y. M. Li, G. Q. Fu et al., “Extraction optimisation of daphnoretin from root bark of Wikstroemia indica (L.) C.A. and its anti-tumour activity tests,” Food Chemistry, vol. 124, no. 4, pp. 1500–1506, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Shi, J. Yu, J. Pohorly, C. Young, M. Bryan, and Y. Wu, “Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution,” Journal of Food Agriculture and Environment, vol. 1, no. 2, pp. 42–47, 2003. View at Google Scholar
  25. G. Q. He, H. P. Xiong, Q. H. Chen, H. Ruan, Z. Y. Wang, and L. Traoré, “Optimization of conditions for supercritical fluid extraction of flavonoids from hops (Humulus lupulus L.),” Journal of Zhejiang University: Science, vol. 6, no. 10, pp. 999–1004, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Guo, Q. Jin, G. Fan, Y. Duan, C. Qin, and M. Wen, “Microwave-assisted extraction of effective constituents from a Chinese herbal medicine Radix puerariae,” Analytica Chimica Acta, vol. 436, no. 1, pp. 41–47, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. W. Xiao, L. Han, and B. Shi, “Microwave-assisted extraction of flavonoids from Radix Astragali,” Separation and Purification Technology, vol. 62, no. 3, pp. 614–618, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Chen, F. Meng, S. Zhang, and Z. Liu, “Effects of ultrahigh pressure extraction conditions on yields and antioxidant activity of ginsenoside from ginseng,” Separation and Purification Technology, vol. 66, no. 2, pp. 340–346, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Liu, B. Shen, F. Guo, and Y. Chang, “Optimization of supercritical fluid extraction of dl-tetrahydropalmatine from rhizome of Corydalis yanhusuo W.T. Wang with orthogonal array design,” Separation and Purification Technology, vol. 64, no. 2, pp. 242–246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. M. A. Felicetti, F. Piantino, J. R. Coury, and M. L. Aguiar, “Influence of removal time and particle size on the particle substrate adhesion force,” Brazilian Journal of Chemical Engineering, vol. 25, no. 1, pp. 71–82, 2008. View at Google Scholar · View at Scopus
  31. Y. Xu, R. Zhang, and H. Fu, “Studies on the optimal process to extract flavonoids from red-raspberry fruits,” Nature and Science, vol. 3, no. 2, pp. 43–46, 2005. View at Google Scholar
  32. S. Y. Cho, Y. N. Lee, and H. J. Park, “Optimization of ethanol extraction and further purification of isoflavones from soybean sprout cotyledon,” Food Chemistry, vol. 117, no. 2, pp. 312–317, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Y. Gan and A. A. Latiff, “Optimisation of the solvent extraction of bioactive compounds from Parkia speciosa pod using response surface methodology,” Food Chemistry, vol. 124, no. 3, pp. 1277–1283, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. J. B. Harborne, “Plant polyphenols. I. Anthocyanin production in the cultivated potato,” The Biochemical Journal, vol. 74, pp. 262–269, 1960. View at Google Scholar · View at Scopus
  35. M. Medić-Šarić, I. Jasprica, A. Smolčić-Bubalo, and A. Mornar, “Optimization of chromatographic conditions in thin layer chromatography of flavonoids and phenolic acids,” Croatica Chemica Acta, vol. 77, no. 1-2, pp. 361–366, 2004. View at Google Scholar · View at Scopus
  36. H. Schulz and M. Baranska, “Identification and quantification of valuable plant substances by IR and Raman spectroscopy,” Vibrational Spectroscopy, vol. 43, no. 1, pp. 13–25, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Nirmaladevi, P. R. Padma, and D. Kavitha, “Analyses of the methanolic extract of the leaves of Rhinacanthus nasutus,” Journal of Medicinal Plants Research, vol. 4, no. 15, pp. 1554–1560, 2010. View at Google Scholar
  38. L. Bravo, L. Goya, and E. Lecumberri, “LC/MS characterization of phenolic constituents of mate (Ilex paraguariensis, St. Hil.) and its antioxidant activity compared to commonly consumed beverages,” Food Research International, vol. 40, no. 3, pp. 393–405, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Sakushima, S. Nishibe, T. Takeda, and Y. Ogihara, “Positive and negative ion mass spectra of flavonoid glycosides by fast atom bombardment,” Mass Spectroscopy, vol. 36, no. 2, pp. 71–80, 1988. View at Publisher · View at Google Scholar
  40. M. J. Dubber, V. Sewram, N. Mshicileli, G. S. Shephard, and I. Kanfer, “The simultaneous determination of selected flavonol glycosides and aglycones in Ginkgo biloba oral dosage forms by high-performance liquid chromatography-electrospray ionisation-mass spectrometry,” Journal of Pharmaceutical and Biomedical Analysis, vol. 37, no. 4, pp. 723–731, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Ferreres, V. Ribeiro, A. G. Izquierdo et al., “Rumex induratus leaves: interesting dietary source of potential bioactive compounds,” Journal of Agricultural and Food Chemistry, vol. 54, no. 16, pp. 5782–5789, 2006. View at Publisher · View at Google Scholar · View at Scopus