Table of Contents
ISRN Biotechnology
Volume 2013 (2013), Article ID 453910, 5 pages
http://dx.doi.org/10.5402/2013/453910
Research Article

A Convenient RP-HPLC Method for Assay Bioactivities of Angiotensin I-Converting Enzyme Inhibitory Peptides

1Institute of Quality Standards for Agriculture Products, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
2College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
3Departmentof Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China

Received 12 May 2012; Accepted 24 July 2012

Academic Editors: H. S. Garcia and J. Jia

Copyright © 2013 Wei Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Vermeirssen, J. Van Camp, and W. Verstraete, “Optimisation and validation of an angiotensin-converting enzyme inhibition assay for the screening of bioactive peptides,” Journal of Biochemical and Biophysical Methods, vol. 51, no. 1, pp. 75–87, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Behnia, A. Molteni, and R. Igić, “Angiotensin-converting enzyme inhibitors: mechanisms of action and implications in anesthesia practice,” Current Pharmaceutical Design, vol. 9, no. 9, pp. 763–776, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. F. H. Messerli, “Combinations in the treatment of hypertension: ACE inhibitors and calcium antagonists,” American Journal of Hypertension, vol. 12, no. 8, pp. S86–S90, 1999. View at Google Scholar · View at Scopus
  4. M. A. Ondetti and D. W. Cushman, “Enzymes of the renin-angiotensin system and their inhibitors,” Annual Review of Biochemistry, vol. 51, pp. 283–308, 1982. View at Google Scholar · View at Scopus
  5. A. Morigiwa, K. Kitabatake, Y. Fujimoto, and N. Ikekawa, “Angiotensin converting enzyme-inhibitory triterpenes from Ganoderma lucidum,” Chemical and Pharmaceutical Bulletin, vol. 34, no. 7, pp. 3025–3028, 1986. View at Google Scholar · View at Scopus
  6. K. Sugiyama, K. Takada, M. Egawa, I. Yamamoto, H. Onzuka, and K. Oba, “Hypertensive effect of fish protein hydrolysate,” Nippon Nogeikagaku Kaishi, vol. 65, pp. 35–41, 1991. View at Publisher · View at Google Scholar
  7. S. Maruyama, S. Miyoshi, and H. Tanaka, “Angiotensin I-converting enzyme inhibitors derived from Ficus carica,” Agricultural and Biological Chemistry, vol. 53, no. 10, pp. 2763–2767, 1989. View at Google Scholar · View at Scopus
  8. S. Miyoshi, H. Ishikawa, T. Kaneko, F. Fukui, H. Tanaka, and S. Maruyama, “Structures and activity of angiotensin-converting enzyme inhibitors in an alpha-zein hydrolysate,” Agricultural and Biological Chemistry, vol. 55, no. 5, pp. 1313–1318, 1991. View at Google Scholar · View at Scopus
  9. M. R. Rhyu, Y. J. Nam, and H. Y. Lee, “Screening of angiotensin converting enzyme inhibitors in cereals and legumes,” Food Biotechnology, vol. 5, pp. 334–337, 1996. View at Google Scholar
  10. Z. I. Shin, R. Yu, S. A. Park et al., “His-His-Leu, an angiotensin I converting enzyme inhibitory peptide derived from Korean soybean paste, exerts antihypertensive activity in vivo,” Journal of Agricultural and Food Chemistry, vol. 49, no. 6, pp. 3004–3009, 2001. View at Google Scholar · View at Scopus
  11. J. Wu and X. Ding, “Hypotensive and physiological effect of angiotensin converting enzyme inhibitory peptides derived from soy protein on spontaneously hypertensive rats,” Journal of Agricultural and Food Chemistry, vol. 49, no. 1, pp. 501–506, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. D. H. Lee, J. H. Kim, J. S. Park, Y. J. Choi, and J. S. Lee, “Isolation and characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from the edible mushroom Tricholoma giganteum,” Peptides, vol. 25, no. 4, pp. 621–627, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Nakamura, N. Yamamoto, K. Sakai, A. Okubo, S. Yamazaki, and T. Takano, “Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk,” Journal of Dairy Science, vol. 78, no. 4, pp. 777–783, 1995. View at Google Scholar · View at Scopus
  14. J. Wu, R. E. Aluko, and A. D. Muir, “Improved method for direct high-performance liquid chromatography assay of angiotensin-converting enzyme-catalyzed reactions,” Journal of Chromatography A, vol. 950, no. 1-2, pp. 125–130, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. D. W. Cushman and H. S. Cheung, “Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung,” Biochemical Pharmacology, vol. 20, no. 7, pp. 1637–1648, 1971. View at Google Scholar · View at Scopus
  16. J. Friedland and E. Silverstein, “A sensitive fluorimetric assay for serum angiotensin converting enzyme,” American Journal of Clinical Pathology, vol. 66, no. 2, pp. 416–424, 1976. View at Google Scholar · View at Scopus
  17. E. Silverstein and J. Friedland, “Elevated serum and spleen angiotensin converting enzyme and serum lysozyme in Gaucher's disease,” Clinica Chimica Acta, vol. 74, no. 1, pp. 21–25, 1977. View at Google Scholar · View at Scopus
  18. A. Persson and I. B. Wilson, “A fluorogenic substrate for angiotensin-converting enzyme,” Analytical Biochemistry, vol. 83, no. 1, pp. 296–303, 1977. View at Google Scholar · View at Scopus
  19. H. M. Neels, S. L. Scharpe, and M. Van Sande, “Improved micromethod for assay of serum angiotensin converting enzyme,” Clinical Chemistry, vol. 28, no. 6, pp. 1352–1355, 1982. View at Google Scholar · View at Scopus
  20. M. T. Doig and J. W. Smiley, “Direct injection assay of angiotensin-converting enzyme by high-performance liquid chromatography using a shielded hydrophobic phase column,” Journal of Chromatography B, vol. 613, no. 1, pp. 145–149, 1993. View at Publisher · View at Google Scholar · View at Scopus
  21. M. C. Araujo, R. I. Melo, E. Del Nery et al., “Internally quenched fluorogenic substrates for angiotensin I-converting enzyme,” Journal of Hypertension, vol. 17, no. 5, pp. 665–672, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. C. J. van Platerink, H. G. M. Janssen, and J. Haverkamp, “Development of an at-line method for the identification of angiotensin-I inhibiting peptides in protein hydrolysates,” Journal of Chromatography B, vol. 846, no. 1-2, pp. 147–154, 2007. View at Publisher · View at Google Scholar · View at Scopus