Table of Contents
ISRN Evolutionary Biology
Volume 2013, Article ID 460580, 11 pages
http://dx.doi.org/10.5402/2013/460580
Review Article

Some Remarks on Bird's Brain and Behavior under the Constraints of Domestication

Research Group “Comparative Neurobiology and Evolutionary Research,” Institute of Anatomy, University of Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany

Received 18 February 2013; Accepted 28 March 2013

Academic Editors: C. Cordero, Á. Kun, and D. Rau

Copyright © 2013 Julia Mehlhorn and Gerd Rehkämper. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. B. Hale, “Domestication and the evolution of behaviour,” in The Behaviour of Domestic Animals, E. S. E. Hafez, Ed., pp. 22–42, Tindall and Cassell, London, UK, 1969. View at Google Scholar
  2. E. O. Price, “Behavioral development in animals undergoing domestication,” Applied Animal Behaviour Science, vol. 65, no. 3, pp. 245–271, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. E. O. Price, Animal Domestication and Behavior, CAB International, Wallingford, UK, 2002.
  4. H. Hemmer, Domestication: The Decline of Environmental Appreciation, Cambridge University Press, Cambridge, UK, 1983.
  5. C. Darwin, On the Origin of Species by Means of Natural Selection, or the Proservation of Favoured Races in the Struggle for Life, John Murray, London, UK, 1859.
  6. C. Darwin, The Variation of Animals and Plants under Domestication, John Murray, London, UK, 1868.
  7. I. Tiemann and G. Rehkämper, “Effect of artificial selection on female choice among domesticated chickens Gallus gallus f.d,” Poultry Science, vol. 88, no. 9, pp. 1948–1954, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Herre and M. Röhrs, Haustiere-zoologisch gesehen, Gustav Fischer, Stuttgart, Germany, 1990.
  9. E. Mayr, Animal Species and Evolution, The Belknap Press of Harvard University Press, Cambridge, Mass, USA, 1963.
  10. M. A. F. Noor, “Is the biological species concept showing its age?” Trends in Ecology and Evolution, vol. 17, no. 4, pp. 153–154, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. J. A. Coyne, H. A. Orr, and H. A., Speciation, Sinauer Associates, Sunderland, Mass, USA, 2004.
  12. J. Maynard-Smith, The Theory of Evolution,, Cambridge University Press, Cambridge, Mass, USA, 1993.
  13. P. Ebinger, “Zur Hirn-Körpergewichtsbeziehung bei Wölfen und Haushunden sowie Haushundrassen,” Zeitschrift für Säugetierkunde, vol. 45, pp. 148–153, 1980. View at Google Scholar
  14. P. Ebinger, “Domestication and plasticity of brain organization in mallards (Anas platyrhynchos f.d.),” Brain, Behavior and Evolution, vol. 45, no. 5, pp. 286–300, 1995. View at Google Scholar · View at Scopus
  15. E. S. E. Hafez, Adaptation of Domestic Animals, Lea & Febiger, Philadelphia, Pa, USA, 1968.
  16. G. Rehkämper, E. Haase, and H. D. Frahm, “Allometric comparison of brain weight and brain structure volumes in different breeds of the domestic pigeon, Columba livia f.d. (fantails, homing pigeons, strassers),” Brain, Behavior and Evolution, vol. 31, no. 3, pp. 141–149, 1988. View at Google Scholar · View at Scopus
  17. G. Rehkämper, H. D. Frahm, and J. Cnotka, “Mosaic evolution and adaptive brain component alteration under domestication seen on the background of evolutionary theory,” Brain, Behavior and Evolution, vol. 71, no. 2, pp. 115–126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. K. R. Kretchmer and M. W. Fox, “Effects of domestication on animal behaviour,” Veterinary Record, vol. 96, no. 5, pp. 102–108, 1975. View at Google Scholar · View at Scopus
  19. R. Sossinka, “Domestication in birds,” in Avian Biology, D. S. Farner, Ed., vol. 6, pp. 373–403, Academic Press, New York, NY, USA, 1982. View at Google Scholar
  20. E. O. Price, “Behavioral genetics and the process of domestication,” in Genetics and the Behavior of Domestic Animals, T. Grandin, Ed., pp. 31–65, Academic Press, San Diego, Calif, USA, 1998. View at Google Scholar
  21. S. Wright, “The relationship of livestock breeding to theories of evolution,” Journal Of Animal Sciences, vol. 46, pp. 1192–1200, 1978. View at Google Scholar
  22. R. D. Crawford, Poultry Breeding and Genetics, Elsevier, Amsterdam, The Netherlands, 1990.
  23. R. Boice, “Domestication,” Psychological Bulletin, vol. 80, no. 3, pp. 215–230, 1973. View at Google Scholar · View at Scopus
  24. J. Diamond, “Evolution, consequences and future of plant and animal domestication,” Nature, vol. 418, no. 6898, pp. 700–707, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. F. E. Zeuner, A History of Domesticated Animals, Hutchinson & Co Trust Company Limited, London, UK, 1963.
  26. D. Kruska, “Domestikationsbedingte Hirngößenänderungen bei Säugetieren,” Zeitschrift für Zoologie, Systematik und Evolutionsforschung, vol. 18, pp. 161–195, 1980. View at Google Scholar
  27. P. Ebinger, H. DeMacedo, and M. Röhrs, “Hirngrößenänderungen von Wild- zum Hausmeerschweinchen,” Zeitschrift für Zoologie, Systematik und Evolutionsforschung, vol. 22, pp. 77–80, 1984. View at Google Scholar
  28. K. Senglaub, “Das Kleinhirn der Vögel in Beziehung zu phylogenetischer Stellung, Lebensweise und Körpergröße, nebst Beiträgen zum Domestikationsproblem,” Zeitschrift für Wissenschaftliche Zoologie, vol. 169, pp. 1–63, 1960. View at Google Scholar
  29. L. Rogers, The Development of Brain and Behaviour in the Chicken, CAB International, Wallingford, UK, 1995.
  30. J. Clutton-Brock, Domesticated Animals from Early Times, British Museum (Natural History), Heinemann, London, UK, 1981.
  31. A. Sheppy, “The colour of domestication and the designer chicken,” Optics and Laser Technology, vol. 43, no. 2, pp. 295–301, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Rehkämper, E. Kart, H. D. Frahm, and C. W. Werner, “Discontinuous variability of brain composition among domestic chicken breeds,” Brain, Behavior and Evolution, vol. 61, no. 2, pp. 59–69, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Brothwell, “Roman evidence of a crested form of domestic fowl, as indicated by a skull showing associated cerebral hernia,” Journal of Archaeological Science, vol. 6, no. 3, pp. 291–293, 1979. View at Google Scholar · View at Scopus
  34. H. D. Frahm and G. Rehkämper, “Allometric comparison of the brain and brain structures in the white crested polish chicken with uncrested domestic chicken breeds,” Brain, Behavior and Evolution, vol. 52, no. 6, pp. 292–307, 1998. View at Google Scholar · View at Scopus
  35. I. Tiemann and G. Rehkämper, “Rassenunterschiede bei Haushühnern (Gallus gallus f.d.) bei klassischer und operanter Konditionierung in der Skinner-Box,” Acta Biologica Benrodis, vol. 13, pp. 231–240, 2007. View at Google Scholar
  36. I. Tiemann and G. Rehkämper, “Breed-specific companions-Inter-individual distances reflect isolating mechanisms within domesticated chickens (Gallus gallus f.d.),” Brain Research Bulletin, vol. 76, no. 3, pp. 300–303, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. I. Tiemann and G. Rehkämper, “Evolutionary pets: offspring numbers reveal speciation process in domesticated chickens,” PloS ONE, vol. 7, no. 8, Article ID e41453, 2012. View at Publisher · View at Google Scholar
  38. R. G. Somes, “Ear-tufts: a skin structure mutation of the Araucana fowl,” Journal of Heredity, vol. 69, no. 2, pp. 91–96, 1978. View at Google Scholar · View at Scopus
  39. A. Sahl, Akustische Wahrnehmung und assoziierte kognitive Leistungen beim Hausgeflügel [Diploma thesis], University of Düsseldorf, Düsseldorf, Germany, 2008.
  40. P. M. Bennett and P. H. Harvey, “Relative brain size and ecology in birds,” Journal of Zoology, vol. 207, pp. 151–169, 1985. View at Google Scholar
  41. A. N. Iwaniuk and P. L. Hurd, “The evolution of cerebrotypes in birds,” Brain, Behavior and Evolution, vol. 65, no. 4, pp. 215–230, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. R. F. Howard and A. Moore, A Complete Checklist of the Birds of the World, Academic Press, London, UK, 1991.
  43. R. O. Hawes, “Pigeons,” in Evolution of Domesticated Animals, I. L. Mason, Ed., pp. 351–356, Longman, New York, NY, USA, 1984. View at Google Scholar
  44. R. F. Johnston and M. Janiga, Feral Pigeons, Oxford University Press, New York, NY, USA, 1995.
  45. P. Ebinger and R. Löhmer, “Comparative quantitative investigations on brains of rock doves, domestic and urban pigeons (Columba l. livia),” Zeitschrift für Zoologie, Systematik und Evolutionsforschung, vol. 22, pp. 136–145, 1984. View at Google Scholar
  46. E. Visalberghi, A. Foa, N. E. Baldaccini, and E. Alleva, “New experiments on the homing ability of the rock pigeon,” Monitore Zoologico Italiano (NS), vol. 12, pp. 199–209, 1978. View at Google Scholar
  47. F. Papi, P. Ioalé, V. Fiaschi, S. Benvenuti, and N. E. Baldaccini, “Olfactory navigation of pigeons: the effect of treatment with odorous air currents,” Journal of Comparative Physiology, vol. 94, no. 3, pp. 187–193, 1974. View at Publisher · View at Google Scholar · View at Scopus
  48. R. A. Barton and P. H. Harvey, “Mosaic evolution of brain structure in mammals,” Nature, vol. 405, no. 6790, pp. 1055–1058, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Lande, “Models of speciation by sexual selection on polygenic traits,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 6 I, pp. 3721–3725, 1981. View at Google Scholar · View at Scopus
  50. J. Mehlhorn and G. Rehkämper, “Neurobiology of the homing pigeon—a review,” Naturwissenschaften, vol. 96, no. 9, pp. 1011–1025, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. D. S. Moore, The Dependent Gene: The Fallacy of Nature versus Nurture, Smithsonians Institution Press, Washington, DC, USA, 2003.
  52. J. Cnotka, M. Möhle, and G. Rehkämper, “Navigational experience affects hippocampus size in homing pigeons,” Brain, Behavior and Evolution, vol. 72, no. 3, pp. 233–238, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Mehlhorn, B. Haastert, and G. Rehkämper, “Asymmetry of different brain structures in homing pigeons with and without navigational experience,” Journal of Experimental Biology, vol. 213, no. 13, pp. 2219–2224, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. T. L. Vincent and J. S. Brown, Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics, Cambridge University Press, Cambridge, UK, 2005.
  55. P. Ebinger and R. Löhmer, “Relationship of brain weight and body weight in mallards,” Zoologischer Anzeiger, vol. 214, pp. 285–290, 1985. View at Google Scholar
  56. D. B. Miller, “Social displays of mallard ducks (Anas platyrhynchos): effects of domestication,” Journal of Comparative and Physiological Psychology, vol. 91, no. 2, pp. 221–232, 1977. View at Google Scholar · View at Scopus
  57. J. Cnotka, H. D. Frahm, and G. Rehkämper, “Intracranial fat bodies and their influence on brain composition and behaviour in domestic ducks with feather crests (3 case studies),” Deutsche Tierärztliche Wochenschrift, vol. 113, no. 1, pp. 27–31, 2006. View at Google Scholar · View at Scopus
  58. J. Cnotka, H. D. Frahm, A. Mpotsaris, and G. Rehkämper, “Motor incoordination, intracranial fat bodies, and breeding strategy in Crested ducks (Anas platyrhynchos f.d.),” Poultry Science, vol. 86, no. 9, pp. 1850–1855, 2007. View at Google Scholar · View at Scopus
  59. T. Bartels and N. Kummerfeld, Abschlussbereicht zum Forschungsauftrag 96 HS 046, Untersuchungen zur Haubenbildung bei Hausenten, Bundesanstalt für Landwirtschaft und Ernährung, Frankfurt a. M., Bonn, Germany, 2001.
  60. T. Bartels, J. Brinkmeier, S. Portmann et al., “Intrakraniale Fettkörper bei Hausenten (Anas platyrhynchos f.d.),” Tierärztliche Praxis, vol. 29, pp. 384–390, 2001. View at Google Scholar
  61. J. Cnotka, I. Tiemann, H. D. Frahm, and G. Rehkämper, “Unusual brain composition in Crested Ducks (Anas platyrhynchos f.d.)-including its effect on behavior and genetic transmission,” Brain Research Bulletin, vol. 76, no. 3, pp. 324–328, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Mehlhorn and G. Rehkämper, “Brain alterations, their impact on behavior and breeding strategy in Crested Ducks (Anas platyrhynchos f.d.),” Archiv für Geflügelkunde, vol. 74, pp. 203–209, 2010. View at Google Scholar
  63. S. J. Gould, The Structure of Evolutionary Theory, The Belknap Press of Harvard University, Cambridge, Mass, USA, 2002.
  64. T. F. Savage, “Mutations and major variants in turkeys,” in Poultry Breeding and Genetics, R. D. Crawford, Ed., pp. 317–331, Elsevier, Amsterdam, The Netherlands, 1990. View at Google Scholar
  65. P. Ebinger, M. Röhrs, and J. Pohlenz, “Reductions of brain and eye weight in the wild and domestic turkey (Meleagris gallopavo),” Zeitschrift für Zoologie, Systematik und Evolutionsforschung, vol. 27, pp. 142–148, 1989. View at Google Scholar
  66. P. Edinger and M. Rohrs, “Volumetric analysis of brain structures, especially of the visual system in wild and domestic turkeys (Meleagris gallopavo),” Journal of Brain Research, vol. 36, no. 2, pp. 219–228, 1995. View at Google Scholar · View at Scopus
  67. A. Portmann, “Études sur la cérébralisation chez les oiseaux I,” Alauda, vol. 14, pp. 2–20, 1946. View at Google Scholar
  68. G. Rehkämper, H. D. Frahm, and K. Zilles, “Quantitative development of brain and brain structures in birds (Galliformes and Passeriformes) compared to that in mammals (Insectivores and Primates),” Brain, Behavior and Evolution, vol. 37, no. 3, pp. 125–143, 1991. View at Google Scholar · View at Scopus
  69. R. D. Crawford, “Turkeys,” in Evolution of Domesticated Animals, I. L. Mason, Ed., pp. 325–334, Longman, New York, NY, USA, 1984. View at Google Scholar
  70. P. Ebinger and R. Löhmer, “A volumetric comparison of brains between greylag geese (Anser anser L.) and domestic geese,” Journal für Hirnforschung, vol. 28, no. 3, pp. 291–299, 1987. View at Google Scholar · View at Scopus
  71. R. O. Hawes, “Mutations and major variants in geese,” in Poultry Breeding and Genetics, R. D. Crawford, Ed., Elsevier, Amsterdam, The Netherlands, 1990. View at Google Scholar
  72. A. D. Mills, L. L. Crawford, M. Domjan, and J. M. Faure, “The behavior of the Japanese or domestic quail Coturnix japonica,” Neuroscience and Biobehavioral Reviews, vol. 21, no. 3, pp. 261–281, 1997. View at Publisher · View at Google Scholar · View at Scopus
  73. K. M. Cheng and M. Kimura, “Mutations and major variants in Japanese quail,” in Poultry Breeding and Genetics, R. D. Crawford, Ed., Elsevier, Amsterdam, The Netherlands, 1990. View at Google Scholar
  74. W. Bessei, R. B. Jones, and J. M. Faure, “Ease of capture by human beings of Japanes quail (Coturnix corturnix japonica) genetically selected for different activity levels,” Archiv für Geflügelkunde, vol. 47, pp. 137–143, 1983. View at Google Scholar
  75. H. Saint-Dizier, P. Constantin, D. C. Davies, C. Leterrier, F. Lévy, and S. Richard, “Subdivisions of the arcopallium/posterior pallial amygdala complex are differentially involved in the control of fear behaviour in the Japanese quail,” Brain Research Bulletin, vol. 79, no. 5, pp. 288–295, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. T. D. Price and M. M. Bouvier, “The evolution of F1 postzygotic incompatibilities in birds,” Evolution, vol. 56, no. 10, pp. 2083–2089, 2002. View at Google Scholar · View at Scopus
  77. D. A. Lijtmaer, B. Mahler, and P. L. Tubaro, “Hybridization and postzygotic isolation patterns in pigeons and doves,” Evolution, vol. 57, no. 6, pp. 1411–1418, 2003. View at Google Scholar · View at Scopus
  78. J. T. Martin, “Embryonic pituitary adrenal axis, behavior development and domestication in birds,” Integrative and Comparative Biology, vol. 18, no. 3, pp. 489–499, 1978. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Weigend and M. N. Romanov, “The world watch list for domestic animal diversity in the context of conservation and utilisation of poultry biodiversity,” World's Poultry Science Journal, vol. 58, no. 4, pp. 411–430, 2002. View at Publisher · View at Google Scholar · View at Scopus
  80. J. Hillel, M. A. M. Groenen, M. Tixier-Boichard et al., “Biodiversity of 52 chicken populations assessed by microsatellite typing of DNA pools,” Genetics Selection Evolution, vol. 35, no. 5, pp. 533–557, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. H. Sawai, H. L. Kim, K. Kuno et al., “The origin and genetic variation of domestic chickens with special reference to junglefowls Gallus g. gallus and G. varius,” PLoS ONE, vol. 5, no. 5, Article ID e10639, 2010. View at Publisher · View at Google Scholar · View at Scopus