Table of Contents
ISRN Obesity
Volume 2013 (2013), Article ID 462394, 5 pages
http://dx.doi.org/10.1155/2013/462394
Clinical Study

Body Fat Mass Assessment: A Comparison between an Ultrasound-Based Device and a Discovery A Model of DXA

1Department of Human Evolution, French National Center for Scientific Research, UPR 2147-CNRS, 44 Amiral Mouchez Street, 75014 Paris, France
2Department of Public Health Sciences, University of Modena and Reggio Emilia, Campi Road 287, 41100 Modena, Italy

Received 18 December 2012; Accepted 25 January 2013

Academic Editors: G. González-Cuevas, D. Micic, and R. Tungtrongchitr

Copyright © 2013 Jean-Claude Pineau et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. C. Pineau, A. M. Guihard-Costa, and M. Bocquet, “Validation of ultrasound techniques applied to body fat measurement,” Annals of Nutrition and Metabolism, vol. 51, no. 5, pp. 421–427, 2007. View at Publisher · View at Google Scholar
  2. M. T. Fanelli and R. J. Kuczmarski, “Ultrasound as an approach to assessing body composition,” The American Journal of Clinical Nutrition, vol. 39, no. 5, pp. 703–709, 1984. View at Google Scholar
  3. M. Yasukawa, S. M. Horvath, K. Oishi, M. Kimura, R. Williams, and T. Maeshima, “Total body fat estimations by near-infrared interactance, A-mode ultrasound, and underwater weighing,” Applied Human Science, vol. 14, no. 4, pp. 183–189, 1995. View at Google Scholar · View at Scopus
  4. R. P. Stolk, O. Wink, P. M. J. Zelissen, R. Meijer, A. P. G. van Gils, and D. E. Grobbee, “Validity and reproducibility of ultrasonography for the measurement of intra-abdominal adipose tissue,” International Journal of Obesity, vol. 25, no. 9, pp. 1346–1351, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Wirth and B. Steinmetz, “Gender differences in changes in subcutaneous and intra-abdominal fat during weight reduction: an ultrasound study,” Obesity Research, vol. 6, no. 6, pp. 393–399, 1998. View at Google Scholar · View at Scopus
  6. F. Armellini, M. Zamboni, R. Robbi et al., “Total and intra-abdominal fat measurements by ultrasound and computerized tomography,” International Journal of Obesity and Related Metabolic Disorders, vol. 17, no. 4, pp. 209–214, 1993. View at Google Scholar
  7. G. Tornaghi, R. Raiteri, C. Pozzato et al., “Anthropometric or ultrasonic measurements in assessment of visceral fat? A comparative study,” International Journal of Obesity and Related Metabolic Disorders, vol. 18, no. 11, pp. 771–775, 1994. View at Google Scholar
  8. Y. Ishida, J. F. Carroll, M. I. Pollock, J. E. Graves, and S. H. Leggett, “Reliability of B-mode ultrasound for the measurement of body fat and muscle thickness,” American Journal of Human Biology, vol. 4, pp. 511–520, 1992. View at Publisher · View at Google Scholar
  9. N. Sabir, E. Pakdemirli, Y. Sermez, M. Zencir, and S. Kazil, “Sonographic assessment of changes in thickness of different abdominal fat layers in response to diet in obese women,” Journal of Clinical Ultrasound, vol. 31, no. 1, pp. 26–30, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Oldroyd, J. G. Truscott, G. Woodrow et al., “Comparison of in-vivo body composition using two Lunar dual-energy X-ray absorptiometers,” European Journal of Clinical Nutrition, vol. 52, no. 3, pp. 180–185, 1998. View at Google Scholar · View at Scopus
  11. P. A. Tataranni, D. J. Pettitt, and E. Ravussin, “Dual energy X-ray absorptiometry: inter-machine variability,” International Journal of Obesity and Related Metabolic Disorders, vol. 20, no. 11, pp. 1048–1050, 1996. View at Google Scholar · View at Scopus
  12. L. D. Plank, “Dual-energy X-ray absorptiometry and body composition,” Current Opinion in Clinical Nutrition & Metabolic Care, vol. 8, no. 3, pp. 305–309, 2005. View at Publisher · View at Google Scholar
  13. F. A. Tylavsky, T. G. Lohman, M. Dockrell et al., “Comparison of the effectiveness of 2 dual-energy X-ray absorptiometers with that of total body water and computed tomography in assessing changes in body composition during weight change,” American Journal of Clinical Nutrition, vol. 77, no. 2, pp. 356–363, 2003. View at Google Scholar · View at Scopus
  14. P. Pludowski, M. Jaworski, H. Matusik, M. Kobylinska, P. Klimek, and R. S. Lorenc, “The evaluation of consistency between body composition assessments in pediatric population using pencil beam and fan beam dual-energy x-ray absorptiometers,” Journal of Clinical Densitometry, vol. 13, no. 1, pp. 84–95, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Hull, Q. He, J. Thornton et al., “iDXA, prodigy, and DPXL dual-energy X-ray absorptiometry whole-body scans: a cross-calibration study,” Journal of Clinical Densitometry, vol. 12, no. 1, pp. 95–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. N. J. Crabtree, N. J. Shaw, C. M. Boivin, B. Oldroyd, and J. G. Truscott, “Pediatric in vivo cross-calibration between the GE Lunar Prodigy and DPX-L bone densitometers,” Osteoporosis International, vol. 16, no. 12, pp. 2157–2167, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. F. E. von Eyben, E. Mouristen, J. Holm et al., “Intra-abdominal obesity and metabolic risk factors: a study of young adults,” International Journal of Obesity, vol. 27, no. 8, pp. 941–949, 2003. View at Publisher · View at Google Scholar
  18. M. I. Goran, “Visceral fat in prepubertal children: influence of obesity, anthropometry, ethnicity, gender, diet, and growth,” American Journal of Human Biology, vol. 11, no. 2, pp. 201–207, 1999. View at Google Scholar · View at Scopus
  19. J. N. Roemmich and A. D. Rogol, “Hormonal changes during puberty and their relationship to fat distribution,” American Journal of Human Biology, vol. 11, no. 2, pp. 209–224, 1999. View at Publisher · View at Google Scholar
  20. T. G. Lohman, A. F. Roche, and R. Martorell, Eds., Anthropometric Standardization Reference Manual, Human Kinetics, Champaign, Ill, USA, 1988.
  21. T. G. Lohman, “Skinfolds and body density and their relation to body fatness: a review,” Human Biology, vol. 53, no. 2, pp. 181–225, 1981. View at Google Scholar · View at Scopus
  22. J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet, vol. 1, no. 8476, pp. 307–310, 1986. View at Google Scholar · View at Scopus
  23. E. Black, L. Petersen, M. Kreutzer et al., “Fat mass measured by DXA varies with scan velocity,” Obesity Research, vol. 10, no. 2, pp. 69–77, 2002. View at Google Scholar · View at Scopus
  24. J. A. Shepherd, S. L. Morgan, and Y. Lu, “Comparing BMD results between two similar DXA systems using the generalized least significant change,” Journal of Clinical Densitometry, vol. 11, no. 2, pp. 237–242, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Lantz, G. Samuelson, L. E. Bratteby, H. Mallmin, and L. Sjöström, “Differences in whole body measurements by DXA-scanning using two Lunar DPX-L machines,” International Journal of Obesity and Related Metabolic Disorders, vol. 23, no. 7, pp. 764–770, 1999. View at Google Scholar · View at Scopus
  26. M. K. Covey, J. K. Berry, and E. D. Hacker, “Regional body composition: cross-calibration of DXA scanners—QDR4500W and Discovery Wi,” Obesity, vol. 18, no. 3, pp. 632–637, 2010. View at Publisher · View at Google Scholar · View at Scopus