Table of Contents
ISRN Mechanical Engineering
Volume 2013 (2013), Article ID 471458, 11 pages
http://dx.doi.org/10.1155/2013/471458
Research Article

Stress Intensity Factors for Cracked Finite Plates with Mixed Boundary Condition

Key Laboratory of Energy Engineering Safety and Disaster Mechanics, Ministry of Education, College of Architecture and Environment, Sichuan University, Chengdu 610065, China

Received 9 July 2013; Accepted 31 July 2013

Academic Editors: k. Mekheimer, A. Z. Sahin, and G.-J. Wang

Copyright © 2013 Zheyuan Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. C. Sih, Handbook of Stress Intensity Factors, Leheigh University, Bethlehem, Pa, USA, 1973.
  2. H. Tada, P. C. Paris, and G. R. Irwin, The Stress Analysis of Cracks Handbook, Del Research Corp, Hellertown, Penn, USA, 1973.
  3. N. I. Muskhelishvili, Some Basic Problems of Mathematical Theory of Elasticity, Noordhoff Press, Amsterdam, The Netherland, 1953.
  4. L. Jing, “A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering,” International Journal of Rock Mechanics and Mining Sciences, vol. 40, no. 3, pp. 283–353, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Murakami, “A simple procedure for the accurate determination of stress intensity factors by finite element method,” Engineering Fracture Mechanics, vol. 8, no. 4, pp. 643–655, 1976. View at Google Scholar · View at Scopus
  6. Z. M. Zhu, S. C. Ji, and H. P. Xie, “An improved method of collocation for the problem of crack surface subjected to uniform load,” Engineering Fracture Mechanics, vol. 54, no. 5, pp. 731–741, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. M. Zhu, H. Xie, and S. C. Ji, “The mixed boundary problems for a mixed mode crack in a finite plate,” Engineering Fracture Mechanics, vol. 56, no. 5, pp. 647–655, 1997. View at Google Scholar · View at Scopus
  8. Z. M. Zhu, L. Wang, B. Mohanty, and C. Huang, “Stress intensity factor for a cracked specimen under compression,” Engineering Fracture Mechanics, vol. 73, no. 4, pp. 482–489, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. M. Zhu, “New biaxial failure criterion for brittle materials in compression,” Journal of Engineering Mechanics, vol. 125, no. 11, pp. 1251–1258, 1999. View at Google Scholar · View at Scopus
  10. Z. M. Zhu, “Evaluation of the range of horizontal stresses in the earth's upper crust by using a collinear crack model,” Journal of Applied Geophysics, vol. 88, pp. 114–121, 2013. View at Publisher · View at Google Scholar
  11. Z. M. Zhu, Y. Wang, Z. Zhou, B. Li, and H. Xie, “New fracture criterion for brittle materials under compression,” Journal of Sichuan University, vol. 40, no. 5, pp. 13–21, 2008. View at Google Scholar · View at Scopus
  12. A. K. Yavuz, S. L. Phoenix, and S. C. TerMaath, “An accurate and fast analysis for strongly interacting multiple crack configurations including kinked (V) and branched (Y) cracks,” International Journal of Solids and Structures, vol. 43, no. 22-23, pp. 6727–6750, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Z. Chen, N. Hasebe, and K. Y. Lee, Multiple Crack Problems in Elasticity, Witpress, Southampton, NY, USA, 2003.
  14. Z. M. Zhu, “An alternative form of propagation criterion for two collinear cracks under compression,” Mathematics and Mechanics of Solids, vol. 14, no. 8, pp. 727–746, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. H. Wang, L. G. Tham, P. K. K. Lee, and Y. Tsui, “A boundary collocation method for cracked plates,” Computers and Structures, vol. 81, no. 28-29, pp. 2621–2630, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. W. C. Jin, Z. M. Zhu, and M. Z. Gao, “A general method to determine the stress intensity factor of multiple collinear cracks,” Mathematics and Mechanics of Solids, vol. 18, no. 4, pp. 397–408, 2012. View at Publisher · View at Google Scholar
  17. J. C. Newman, “An improved method of collocation for the stress analysis of cracked plate with various shaped boundaries,” NASA TN-D-6376, National Aeronautics and Space Administration, Washington, DC, USA, 1971. View at Google Scholar