Table of Contents
ISRN Corrosion
Volume 2013 (2013), Article ID 506759, 10 pages
http://dx.doi.org/10.1155/2013/506759
Research Article

Corrosion of WC-VC-Co Hardmetal in Neutral Chloride Containing Media

1Council for Scientific and Industrial Research (CSIR), Materials Science and Manufacturing, P.O. Box 395, Pretoria 0001, South Africa
2DST/NRF Centre of Excellence in Strong Materials, and School of Chemical and Metallurgical Engineering, University of Witwatersrand, Johannesburg, Wits 2050, South Africa
3Materials Science and Engineering Department, University of Ghana, Legon, Accra, Ghana
4School of Research, Enterprise and Innovation, Manchester Metropolitan University, Oxford Road, Manchester M1 5GD, UK
5School of Science and the Environment, Manchester Metropolitan University, Oxford Road, Manchester M1 5GD, UK
6School of Chemistry, University of the Witwatersrand, Johannesburg, Private Bag X3, Wits 2050, South Africa

Received 29 November 2012; Accepted 20 December 2012

Academic Editors: G. Marginean and R. Wang

Copyright © 2013 C. N. Machio et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Engqvist, U. Beste, and N. Axén, “Influence of pH on sliding wear of WC-based materials,” International Journal of Refractory Metals and Hard Materials, vol. 18, no. 2, pp. 103–109, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. M. H. Ghandehari, “Anodic behavior of cemented WC-6% co alloy in phosphoric acid solutions,” Journal of the Electrochemical Society, vol. 127, no. 10, pp. 2144–2147, 1980. View at Google Scholar · View at Scopus
  3. W. J. Tomlinson and C. R. Linzell, “Anodic polarization and corrosion of cemented carbides with cobalt and nickel binders,” Journal of Materials Science, vol. 23, no. 3, pp. 914–918, 1988. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Human, I. Northrop, S. Luyckx, and M. James, “A comparison between cemented carbides containing cobalt- and nickel-based binders,” Journal of Hard Materials, vol. 2, no. 3, pp. 245–256, 1991. View at Google Scholar
  5. J. H. Potgieter, N. Thanjekwayo, P. Olubambi, N. Maledi, and S. S. Potgieter-Vermaak, “Influence of Ru additions on the corrosion behaviour of WC-Co cemented carbide alloys in sulphuric acid,” International Journal of Refractory Metals and Hard Materials, vol. 29, no. 4, pp. 478–487, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. W. J. Tomlinson and N. J. Ayerst, “Anodic polarization and corrosion of WC-Co hardmetals containing small amounts of Cr3C2 and/or VC,” Journal of Materials Science, vol. 24, no. 7, pp. 2348–2352, 1989. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Broccardo, An investigation into the corrosion resistance of WC-VC-Co hardmetals [M.Sc. thesis], University of the Witwatersrand, 2003.
  8. D. S. Konadu, J. V. D. Merwe, J. H. Potgieter, S. Potgieter-Vermaak, and C. N. Machio, “The corrosion behaviour of WC-VC-Co hardmetals in acidic media,” Corrosion Science, vol. 52, no. 9, pp. 3118–3125, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. M. Human and H. E. Exner, “The relationship between electrochemical behaviour and in-service corrosion of WC based cemented carbides,” International Journal of Refractory Metals and Hard Materials, vol. 15, no. 1-3, pp. 65–71, 1997. View at Google Scholar · View at Scopus
  10. H. E. Exner, “Physical and chemical nature of cemented carbides,” International metals reviews, vol. 24, no. 4, pp. 149–173, 1979. View at Google Scholar · View at Scopus
  11. A. M. Human and H. E. Exner, “Electrochemical behaviour of tungsten-carbide hardmetals,” Materials Science and Engineering A, vol. 209, no. 1-2, pp. 180–191, 1996. View at Google Scholar · View at Scopus
  12. M. T. Laugier, “Coercivity, hardness and microstructure in WC-Co composites,” Journal of Materials Science Letters, vol. 4, no. 2, pp. 211–216, 1985. View at Publisher · View at Google Scholar · View at Scopus
  13. D. L. Tillwick and I. Joffe, “Precipitation and magnetic hardening in sintered WC-Co composite materials,” Journal of Physics D, vol. 6, no. 13, pp. 1585–1596, 1973. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Roebuck, E. A. Almond, and A. M. Cottenden, “The influence of composition, phase transformation and varying the relative F.C.C. and H.C.P. phase contents on the properties of dilute CoWC alloys,” Materials Science and Engineering, vol. 66, no. 2, pp. 179–194, 1984. View at Google Scholar · View at Scopus
  15. C. N. Machio, Preparation, characterisation and testing of WC-VC-Co HP/HVOF thermal spray coatings [Ph.D. thesis], University the Witwatersrand, 2006.
  16. P. Delichere, P. Falaras, M. Froment, A. Hugot-Le Goff, and B. Agius, “Electrochromism in anodic WO3 films I: preparation and physicochemical properties of films in the virgin and coloured states,” Thin Solid Films, vol. 161, pp. 35–46, 1988. View at Google Scholar · View at Scopus
  17. B. Bozzini, G. Pietro De Gaudenzi, A. Fanigliulo, and C. Mele, “Electrochemical oxidation of WC in acidic sulphate solution,” Corrosion Science, vol. 46, no. 2, pp. 453–469, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Kubo and Y. Nishikitani, “Deposition temperature dependence of optical gap and coloration efficiency spectrum in electrochromic tungsten oxide films,” Journal of the Electrochemical Society, vol. 145, no. 5, pp. 1729–1734, 1998. View at Google Scholar · View at Scopus
  19. G. N. Kustova, Y. A. Chesalov, L. M. Plyasova, I. Y. Lin, and A. I. Nizovskii, “Vibrational spectra of WO3·nH2O and WO3 polymorphs,” Vibrational Spectroscopy, vol. 55, no. 2, pp. 235–240, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. J. A. Horsley, I. E. Wachs, J. M. Brown, G. H. Via, and F. D. Hardcastle, “Structure of surface tungsten oxide species in the WO3/Al2O3 supported oxide system from X-ray absorption near-edge spectroscopy and Raman spectroscopy,” Journal of Physical Chemistry, vol. 91, no. 15, pp. 4014–4020, 1987. View at Google Scholar · View at Scopus
  21. K. Nonaka, A. Takase, and K. Miyakawa, “Raman spectra of sol-gel-derived tungsten oxides,” Journal of Materials Science Letters, vol. 12, no. 5, pp. 274–277, 1993. View at Publisher · View at Google Scholar · View at Scopus
  22. A. M. Human, B. Roebuck, and H. E. Exner, “Electrochemical polarisation and corrosion behaviour of cobalt and Co(W,C) alloys in 1 N sulphuric acid,” Materials Science and Engineering A, vol. 241, no. 1-2, pp. 202–210, 1998. View at Google Scholar · View at Scopus
  23. C. Colin, L. Durant, N. Favrot, J. Besson, G. Barbier, and F. Delannay, “Processing of functional-gradient WC-Co cermets by powder metallurgy,” International Journal of Refractory Metals and Hard Materials, vol. 12, no. 3, pp. 145–152, 1993. View at Google Scholar · View at Scopus
  24. C. Allen, “Corrosion of galvanised steel in synthetic mine waters,” British Corrosion Journal, vol. 26, no. 2, pp. 93–101, 1991. View at Google Scholar · View at Scopus
  25. S. Yeo, D. J. Kim, and J. W. Park, “Enhanced corrosion resistance of WC-Co with an ion beam mixed silicon carbide coating,” International Journal of Refractory Metals and Hard Materials, vol. 29, no. 5, pp. 582–585, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Hochstrasser-Kurz, Y. Mueller, C. Latkoczy, S. Virtanen, and P. Schmutz, “Analytical characterization of the corrosion mechanisms of WC-Co by electrochemical methods and inductively coupled plasma mass spectroscopy,” Corrosion Science, vol. 49, no. 4, pp. 2002–2020, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Schnyder, C. Stössel-Sittig, R. Kötz et al., “Investigation of the electrochemical behaviour of WC-Co hardmetal with electrochemical and surface analytical methods,” Surface Science, vol. 566–568, no. 1–3, pp. 1240–1245, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Mitrovic-Scepanovic, B. MacDougall, and M. J. Graham, “The effect of Cl- ions on the passivation of Fe26Cr alloy,” Corrosion Science, vol. 27, no. 3, pp. 239–247, 1987. View at Google Scholar · View at Scopus
  29. B. Bozzini, G. P. De Gaudenzi, A. Fanigliulo, and C. Mele, “Anodic behaviour of WC-Co type hardmetal,” Materials and Corrosion, vol. 54, no. 5, pp. 295–303, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Zur Megede and E. Heitz, “Das korrosionsverhalten von Hartmetall-Verbundwerkstoffen in chloridhaltigen wäßrigen lösungen,” Materials and Corrosion, vol. 37, no. 5, pp. 207–214, 1986. View at Google Scholar
  31. M. F. Daniel, B. Desbat, J. C. Lassegues, B. Gerand, and M. Figlarz, “Infrared and Raman study of WO3 tungsten trioxides and WO3·xH2O tungsten trioxide tydrates,” Journal of Solid State Chemistry, vol. 67, no. 2, pp. 235–247, 1987. View at Google Scholar · View at Scopus
  32. D. S. Kim, M. Ostromecki, and I. E. Wachs, “Surface structures of supported tungsten oxide catalysts under dehydrated conditions,” Journal of Molecular Catalysis A, vol. 106, no. 1-2, pp. 93–102, 1996. View at Google Scholar · View at Scopus
  33. F. D. Hardcastle and I. E. Wachs, “Determination of vanadium-oxygen bond distances and bond orders by Raman spectroscopy,” Journal of Physical Chemistry, vol. 95, no. 13, pp. 5031–5041, 1991. View at Google Scholar · View at Scopus
  34. M. A. Vuurman, D. J. Stufkens, A. Oskam, G. Deo, and I. E. Wachs, “Combined Raman and IR study of MOx-V2O5/Al2O3 (MOx = MoO3, WO3, NiO, CoO) catalysts under dehydrated conditions,” Journal of the Chemical Society—Faraday Transactions, vol. 92, no. 17, pp. 3259–3265, 1996. View at Google Scholar · View at Scopus
  35. C. K. Gupta and N. Krishnamurthy, Extractive Metallurgy of Vanadium, Elsevier Science Publishers B.V., Amsterdam, The Netherlands, 1992.
  36. S. Sutthiruangwong and G. Mori, “Corrosion properties of Co-based cemented carbides in acidic solutions,” International Journal of Refractory Metals and Hard Materials, vol. 21, no. 3-4, pp. 135–145, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Breval, J. P. Cheng, D. K. Agrawal et al., “Comparison between microwave and conventional sintering of WC/Co composites,” Materials Science and Engineering A, vol. 391, no. 1-2, pp. 285–295, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. I. Sugiyama, Y. Mizumukai, T. Taniuchi et al., “Formation of (W, V)Cx layers at the WC/Co interfaces in the VC-doped WC-Co cemented carbide,” International Journal of Refractory Metals and Hard Materials, vol. 30, no. 1, pp. 185–187, 2012. View at Publisher · View at Google Scholar