Table of Contents
ISRN Artificial Intelligence
Volume 2013, Article ID 514641, 18 pages
http://dx.doi.org/10.1155/2013/514641
Review Article

3D Gestural Interaction: The State of the Field

Department of EECS, University of Central Florida, Orlando, FL 32816, USA

Received 9 September 2013; Accepted 14 October 2013

Academic Editors: O. Castillo, R.-C. Hwang, and P. Kokol

Copyright © 2013 Joseph J. LaViola Jr. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. E. Sutherland, “The ultimate display,” in Proceedings of the IFIP Congress, pp. 506–508, 1965.
  2. A. van Dam, “Post-WIMP User Interfaces,” Communications of the ACM, vol. 40, no. 2, pp. 63–67, 1997. View at Google Scholar · View at Scopus
  3. P. Kortum, “HCI beyond the GUI: design for haptic, speech, olfactory, and other nontraditional interfaces,” in Interactive Technologies, Elsevier Science, New York, NY, USA, 2008. View at Google Scholar
  4. D. Wigdor and D. Wixon, Brave NUI World: Designing Natural User Interfaces for Touch and Gesture, Elsevier Science, New York, NY, USA, 2011.
  5. D. A. Bowman, E. Kruijff, J. J. LaViola Jr., and I. Poupyrev, “An introduction to 3-D user interface design,” Presence, vol. 10, no. 1, pp. 96–108, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Zhai, P. O. Kristensson, C. Appert, T. H. Andersen, and X. Cao, “Foundational issues in touch-surface stroke gesture design-an integrative review,” Foundations and Trends in Human-Computer Interaction, vol. 5, no. 2, pp. 97–205, 2012. View at Google Scholar
  7. J. J. LaViola Jr., “A survey of hand posture and gesture recognition techniques and technology,” Technical Report, Brown University, Providence, RI, USA, 1999. View at Google Scholar
  8. S. Mitra and T. Acharya, “Gesture recognition: a survey,” IEEE Transactions on Systems, Man and Cybernetics C, vol. 37, no. 3, pp. 311–324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Norton, C. A. Wingrave, and J. J. LaViola Jr., “Exploring strategies and guidelines for developing full body video game interfaces,” in Proceedings of the 5th International Conference on the Foundations of Digital Games (FDG '10), pp. 155–162, ACM, New York, NY, USA, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. K. Aggarwal and M. S. Ryoo, “Human activity analysis: a review,” ACM Computing Surveys, vol. 43, no. 3, p. 16, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Poppe, “A survey on vision-based human action recognition,” Image and Vision Computing, vol. 28, no. 6, pp. 976–990, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Welch and E. Foxlin, “Motion tracking: no silver bullet, but a respectable arsenal,” IEEE Computer Graphics and Applications, vol. 22, no. 6, pp. 24–38, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Dipietro, A. M. Sabatini, and P. Dario, “A survey of glove-based systems and their applications,” IEEE Transactions on Systems, Man and Cybernetics C, vol. 38, no. 4, pp. 461–482, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Mistry and P. Maes, “SixthSense: a wearable gestural interface,” in Proceedings of the ACM SIGGRAPH ASIA 2009 Sketches (SIGGRAPH ASIA '09), p. 11:1, ACM, New York, NY, USA, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Kim, O. Hilliges, S. Izadi et al., “Digits: freehand 3d interactions anywhere using a wrist-worn gloveless sensor,” in Proceedings of the 25th annual ACM symposium on User interface software and technology (UIST '12), pp. 167–176, ACM, New York, NY, USA, 2012.
  16. G. Bailly, J. Muller, M. Rohs, D. Wigdor, and S. Kratz, “Shoesense: a new perspective on gestural interaction and wearable applications,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '12), pp. 1239–1248, ACM, New York, NY, USA, 2012.
  17. T. Starner, J. Auxier, D. Ashbrook, and M. Gandy, “Gesture Pendant: a self-illuminating, wearable, infrared computer vision system for home automation control and medical monitoring,” in Proceedings of the 4th Intenational Symposium on Wearable Computers, pp. 87–94, October 2000. View at Scopus
  18. C. Harrison, H. Benko, and A. D. Wilson, “OmniTouch: wearable multitouch interaction everywhere,” in Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology (UIST '11), pp. 441–450, ACM, New York, NY, USA, October 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Kim, J. He, K. Lyons, and T. Starner, “The Gesture Watch: a wireless contact-free Gesture based wrist interface,” in Proceedings of the11th IEEE International Symposium on Wearable Computers (ISWC '07), pp. 15–22, IEEE Computer Society, Washington, DC, USA, October 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. T. S. Saponas, D. S. Tan, D. Morris, and R. Balakrishnan, “Demonstrating the feasibility of using forearm electromyography for muscle-computer interfaces,” in Proceedings of the 26th Annual CHI Conference on Human Factors in Computing Systems (CHI '08), pp. 515–524, ACM, New York, NY, USA, April 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. T. S. Saponas, D. S. Tan, D. Morris, R. Balakrishnan, J. Turner, and J. A. Landay, “Enabling always-available input with muscle-computer interfaces,” in Proceedings of the 22nd Annual ACM Symposium on User Interface Software and Technology (UIST '09), pp. 167–176, ACM, New York, NY, USA, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. T. S. Saponas, D. S. Tan, D. Morris, J. Turner, and J. A. Landay, “Making muscle-computer interfaces more practical,” in Proceedings of the 28th Annual CHI Conference on Human Factors in Computing Systems (CHI '10), pp. 851–854, ACM, New York, NY, USA, April 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Harrison, D. Tan, and D. Morris, “Skinput: appropriating the body as an input surface,” in Proceedings of the 28th Annual CHI Conference on Human Factors in Computing Systems (CHI '10), pp. 453–462, ACM, New York, NY, USA, April 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Y. Wang and J. Popović, “Real-time hand-tracking with a color glove,” ACM Transactions on Graphics, vol. 28, no. 3, p. 63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. D. F. Keefe, D. A. Feliz, T. Moscovich, D. H. Laidlaw, and J. LaViola J.J., “CavePainting: a fully immersive 3D artistic medium and interactive experience,” in Proceedings of the 2001 symposium on Interactive 3D graphics (I3D '01), pp. 85–93, ACM, New York, NY, USA, March 2001. View at Scopus
  26. C. Ware and D. R. Jessome, “Using the BAT: a six-dimensional mouse for object placement,” IEEE Computer Graphics and Applications, vol. 8, no. 6, pp. 65–70, 1988. View at Publisher · View at Google Scholar · View at Scopus
  27. R. C. Zeleznik, J. J. La Viola Jr., D. Acevedo Feliz, and D. F. Keefe, “Pop through button devices for VE navigation and interaction,” in Proceedings of the IEEE Virtual Reality 2002, pp. 127–134, March 2002. View at Scopus
  28. A. Basu, C. Saupe, E. Refour, A. Raij, and K. Johnsen, “Immersive 3dui on one dollar a day,” in Proceedings of the IEEE Symposium on 3D User Interfaces (3DUI '12), pp. 97–100, 2012.
  29. B. Williamson, C. Wingrave, and J. LaViola, “Full body locomotion with video game motion controllers,” in Human Walking in Virtual Environments, F. Steinicke, Y. Visell, J. Campos, and A. Lecuyer, Eds., pp. 351–376, Springer, New York, NY, USA, 2013. View at Google Scholar
  30. C. A. Wingrave, B. Williamson, P. D. Varcholik et al., “The wiimote and beyond: spatially convenient devices for 3D user interfaces,” IEEE Computer Graphics and Applications, vol. 30, no. 2, pp. 71–85, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Cohn, D. Morris, S. N. Patel, and D. S. Tan, “Your noise is my command: sensing gestures using the body as an antenna,” in Proceedings of the 29th Annual SIGCHI Conference on Human Factors in Computing Systems (CHI '11), pp. 791–800, ACM, New York, NY, USA, May 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Cohn, S. Gupta, T.-J. Lee et al., “An ultra-low-power human body motion sensor using static electric field sensing,” in Proceedings of the 2012 ACM Conference on Ubiquitous Computing (UbiComp '12), pp. 99–102, ACM, New York, NY, USA, 2012.
  33. G. Cohn, D. Morris, S. Patel, and D. Tan, “Humantenna: using the body as an antenna for real-time whole-body interaction,” in Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems (CHI '12), pp. 1901–1910, ACM, New York, NY, USA, 2012.
  34. J. H. Hammer and J. Beyerer, “Robust hand tracking in realtime using a single head-mounted rgb camera,” in Human-Computer Interaction. Interaction Modalities and Techniques, M. Kurosu, Ed., vol. 8007 of Lecture Notes in Computer Science, pp. 252–261, Springer, Berlin, Germany, 2013. View at Google Scholar
  35. S.-H. Choi, J.-H. Han, and J.-H. Kim, “3D-position estimation for hand gesture interface using a single camera,” in Human-Computer Interaction. Interaction Techniques and Environments, J. A. Jacko, Ed., vol. 6762 of Lecture Notes in Computer Science, pp. 231–237, Springer, Berlin, Germany, 2011. View at Google Scholar
  36. S. Rodriguez, A. Picon, and A. Villodas, “Robust vision-based hand tracking using single camera for ubiquitous 3D gesture interaction,” in Proceedings of the IEEE Symposium on 3D User Interfaces 2010 (3DUI '10), pp. 135–136, March 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Starner, J. Weaver, and A. Pentland, “Real-time american sign language recognition using desk and wearable computer based video,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 12, pp. 1371–1375, 1998. View at Publisher · View at Google Scholar · View at Scopus
  38. A. K. Bhowmik, “3D computer vision,” in SID Seminar Lecture Notes, M9, 2012. View at Google Scholar
  39. R. Y. Wang, S. Paris, and J. Popović, “6D hands: markerless hand tracking for computer aided design,” in Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology (UIST '11), pp. 549–557, ACM, New York, NY, USA, October 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Hackenberg, R. McCall, and W. Broll, “Lightweight palm and finger tracking for real-time 3D gesture control,” in Proceedings of the 18th IEEE Virtual Reality Conference (VR '11), pp. 19–26, March 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Keskin, F. Kiraç, Y. E. Kara, and L. Akarun, “Real time hand pose estimation using depth sensors,” in Consumer Depth Cameras for Computer Vision, Advances in Computer Vision and Pattern Recognition, A. Fossati, J. Gall, H. Grabner, X. Ren, and K. Konolige, Eds., pp. 119–137, Springer, 2013. View at Publisher · View at Google Scholar · View at Scopus
  42. Z. Feng, S. Xu, X. Zhang, L. Jin, Z. Ye, and W. Yang, “Real-time fingertip tracking and detection using kinect depth sensor for a new writing-in-the air system,” in Proceedings of the 4th International Conference on Internet Multimedia Computing and Service (ICIMCS '12), pp. 70–74, ACM, New York, NY, USA, 2012.
  43. H. Liang, J. Yuan, and D. Thalmann, “3D fingertip and palm tracking in depth image sequences,” in Proceedings of the 20th ACM international conference on Multimedia (MM '12), pp. 785–788, ACM, New York, NY, USA, 2012.
  44. Z. Ren, J. Yuan, and Z. Zhang, “Robust hand gesture recognition based on finger-earth mover's distance with a commodity depth camera,” in Proceedings of the 19th ACM International Conference on Multimedia ACM Multimedia (MM '11), pp. 1093–1096, ACM, New York, NY, USA, December 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Shotton, T. Sharp, A. Kipman et al., “Real-time human pose recognition in parts from single depth images,” Communications of the ACM, vol. 56, no. 1, pp. 116–124, 2011. View at Google Scholar
  46. V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun, “Real time motion capture using a single time-of-flight camera,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '10), pp. 755–762, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. L. A. Schwarz, A. Mkhitaryan, D. Mateus, and N. Navab, “Human skeleton tracking from depth data using geodesic distances and optical flow,” Image and Vision Computing, vol. 30, no. 3, pp. 217–226, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. X. Wei, P. Zhang, and J. Chai, “Accurate realtime full-body motion capture using a single depth camera,” ACM Transactions on Graphics, vol. 31, no. 6, pp. 188:1–188:12, 2012. View at Google Scholar
  49. S. Gupta, D. Morris, S. Patel, and D. Tan, “Soundwave: using the doppler effect to sense gestures,” in Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems (CHI '12), pp. 1911–1914, ACM, New York, NY, USA, 2012.
  50. S. Gupta, K. Chen, M. S. Reynolds, and S. N. Patel, “LightWave: using compact fluorescent lights as sensors,” in Proceedings of the 13th International Conference on Ubiquitous Computing (UbiComp '11), pp. 65–74, ACM, New York, NY, USA, September 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Suarez and R. R. Murphy, “Hand gesture recognition with depth images: a review,” in Proceedings of the 21st IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN '12), pp. 411–417, IEEE, 2012.
  52. A. D. Wilson, “Sensor- and recognition-based input for interaction,” in The Human Computer Interaction Handbook, chapter 7, pp. 133–156, 2012. View at Google Scholar
  53. Y. Wu and T. S. Huang, “Vision-based gesture recognition: a review,” in Gesture-Based Communication in Human-Computer Interaction, A. Braffort, R. Gherbi, S. Gibet, D. Teil, and J. Richardson, Eds., vol. 1739 of Lecture Notes in Computer Science, pp. 103–115, Springer, Berlin, Germany, 1999. View at Google Scholar
  54. C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics), Springer, New York, NY, USA, 2006.
  55. R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2nd Edition), Wiley-Interscience, New York, NY, USA, 2000.
  56. L. R. Rabiner, “Tutorial on hidden Markov models and selected applications in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Sako and T. Kitamura, “Subunit modeling for japanese sign language recognition based on phonetically depend multi-stream hidden markov models,” in Universal Access in Human-Computer Interaction. Design Methods, Tools, and Interaction Techniques for EInclusion, C. Stephanidis and M. Antona, Eds., vol. 8009 of Lecture Notes in Computer Science, pp. 548–555, Springer, Berlin, Germany, 2013. View at Google Scholar
  58. H. Pang and Y. Ding, “Dynamic hand gesture recognition using kinematic features based on hidden markov model,” in Proceedings of the 2nd International Conference on Green Communications and Networks (GCN '12), Y. Yang and M. Ma, Eds., vol. 5–227 of Lecture Notes in Electrical Engineering, pp. 255–262, Springer, Berlin, Germany, 2013.
  59. F. Bevilacqua, B. Zamborlin, A. Sypniewski, N. Schnell, F. Guédy, and N. Rasamimanana, “Continuous realtime gesture following and recognition,” in Gesture in Embodied Communication and Human-Computer Interaction, S. Kopp and I. Wachsmuth, Eds., vol. 5934 of Lecture Notes in Computer Science, pp. 73–84, Springer, Berlin, Germany, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Wan, Q. Ruan, G. An, and W. Li, “Gesture recognition based on hidden markov model from sparse representative observations,” in Proceedings of the IEEE 11th International Conference on Signal Processing (ICSP '12), vol. 2, pp. 1180–1183, 2012.
  61. Y. Lee and S. Cho, “Activity recognition using hierarchical hidden markov models on a smartphone with 3D accelerometer,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6678, no. 1, pp. 460–467, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Bilal, R. Akmeliawati, A. A. Shafie, and M. J. E. Salami, “Hidden Markov model for human to computer interaction: a study on human hand gesture recognition,” Artificial Intelligence Review, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. F. Chen, C. Fu, and C. Huang, “Hand gesture recognition using a real-time tracking method and hidden Markov models,” Image and Vision Computing, vol. 21, no. 8, pp. 745–758, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. D. Kelly, J. McDonald, C. Markham, and editors, “Recognition of spatiotemporal gestures in sign language using gesture threshold hmms,” in Machine Learning for Vision-Based Motion Analysis, Advances in Pattern Recognition, L. Wang, G. Zhao, L. Cheng, and M. Pietikainen, Eds., pp. 307–348, Springer, London, UK, 2011. View at Google Scholar
  65. A. Just and S. Marcel, “A comparative study of two state-of-the-art sequence processing techniques for hand gesture recognition,” Computer Vision and Image Understanding, vol. 113, no. 4, pp. 532–543, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. N. Nguyen-Duc-Thanh, S. Lee, and D. Kim, “Two-stage hidden markov model in gesture recognition for human robot interaction,” International Journal of Advanced Robotic Systems, vol. 9, no. 39, 2012. View at Google Scholar
  67. T. Pylvänäinen, “Accelerometer based gesture recognition using continuous HMMs,” in Proceedings of the 2nd Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA '05), J. S. Marques, N. P. de la Blanca, and P. Pina, Eds., vol. 3522 of Lecture Notes in Computer Science, pp. 639–646, Springer, Berlin, Germany, June 2005. View at Scopus
  68. A. Whitehead and K. Fox, “Device agnostic 3D gesture recognition using hidden Markov models,” in Proceedings of the GDC Canada International Conference on the Future of Game Design and Technology (FuturePlay '09), pp. 29–30, ACM, New York, NY, USA, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. P. Zappi, B. Milosevic, E. Farella, and L. Benini, “Hidden Markov Model based gesture recognition on low-cost, low-power Tangible User Interfaces,” Entertainment Computing, vol. 1, no. 2, pp. 75–84, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional random fields: probabilistic models for segmenting and labeling sequence data,” in Proceedings of the 18th International Conference on Machine Learning (ICML '01), pp. 282–289, Morgan Kaufmann, San Francisco, Calif, USA, 2001.
  71. H. Chung and H.-D. Yang, “Conditional random field-based gesture recognition with depth information,” Optical Engineering, vol. 52, no. 1, p. 017201, 2013. View at Google Scholar
  72. H. Yang, S. Sclaroff, and S. Lee, “Sign language spotting with a threshold model based on conditional random fields,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 7, pp. 1264–1277, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. H. Yang and S. Lee, “Simultaneous spotting of signs and fingerspellings based on hierarchical conditional random fields and boostmap embeddings,” Pattern Recognition, vol. 43, no. 8, pp. 2858–2870, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. C. Ellis, S. Z. Masood, M. F. Tappen, J. J. LaViola Jr., and R. Sukthankar, “Exploring the trade-off between accuracy and observational latency in action recognition,” International Journal of Computer Vision, vol. 101, no. 3, pp. 420–436, 2013. View at Google Scholar
  75. M. Elmezain, A. Al-Hamadi, S. Sadek, and B. Michaelis, “Robust methods for hand gesture spotting and recognition using Hidden Markov Models and Conditional Random Fields,” in Proceedings of the 10th IEEE International Symposium on Signal Processing and Information Technology (ISSPIT '10), pp. 131–136, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Quattoni, S. Wang, L. Morency, M. Collins, and T. Darrell, “Hidden conditional random fields,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 10, pp. 1848–1853, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. B. W. Sy, A. Quattoni, L. Morency, D. Demirdjian, and T. Darrell, “Hidden conditional random fields for gesture recognition,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '06), vol. 2, pp. 1521–1527, June 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. Y. Song, D. Demirdjian, and R. Davis, “Multi-signal gesture recognition using temporal smoothing hidden conditional random fields,” in Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition and Workshops (FG '11), pp. 388–393, March 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. T. Liu, K. Wang, A. Tsai, and C. Wang, “Hand posture recognition using hidden conditional random fields,” in Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM '09), pp. 1828–1833, July 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. F. Liu and Y. Jia, “Human action recognition using manifold learning and hidden conditional random fields,” in Proceedings of the 9th International Conference for Young Computer Scientists (ICYCS '08), pp. 693–698, November 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. C. R. Souza, E. B. Pizzolato, M. S. Anjo, and editors, “Fingerspelling recognition with support vector machines and hidden conditional random fields,” in Proceedings of the Ibero-American Conference on Artificial Intelligence (IBERAMIA '12), J. Pavon, N. D. Duque-Mendez, and R. Fuentes-Fernandez, Eds., vol. 7637 of Lecture Notes in Computer Science, pp. 561–570, Springer, 2012.
  82. L. Morency, A. Quattoni, and T. Darrell, “Latent-dynamic discriminative models for continuous gesture recognition,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '07), pp. 1–8, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Elmezain and A. Al-Hamadi, “Ldcrfs-based hand gesture recognition,” in Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC '12), pp. 2670–2675, 2012.
  84. Y. Song, D. Demirdjian, and R. Davis, “Continuous body and hand gesture recognition for natural human-computer interaction,” ACM Transactions on Interactive Intelligent Systems, vol. 2, no. 1, pp. 5:1–5:28, 2012. View at Google Scholar
  85. Y. Zhang, K. Adl, and J. Glass, “Fast spoken query detection using lower-bound dynamic time warping on graphical processing units,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '12), pp. 5173–5176, March 2012.
  86. M. Elmezain, A. Al-Hamadi, and B. Michaelis, “Discriminative models-based hand gesture recognition,” in Proceedings of the 2nd International Conference on Machine Vision (ICMV '09), pp. 123–127, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. V. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, NY, USA, 1995.
  88. D. Huang, W. Hu, and S. Chang, “Vision-based hand gesture recognition using PCA+Gabor filters and SVM,” in Proceedings of the 5th International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP '09), pp. 1–4, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. C. T. Hsieh, C. H. Yeh, K. M. Hung, L. M. Chen, and C. Y. Ke, “A real time hand gesture recognition system based on dft and svm,” in Proceedings of the 8th International Conference on Information Science and Digital Content Technology (ICIDT '12), vol. 3, pp. 490–494, 2012.
  90. C.-C. Hsieh and D.-H. Liou, “Novel haar features for real-time hand gesture recognition using svm,” Journal of Real-Time Image Processing, 2012. View at Google Scholar
  91. N. Dardas, Q. Chen, N. D. Georganas, and E. M. Petriu, “Hand gesture recognition using bag-of-features and multi-class support vector machine,” in Proceedings of the 9th IEEE International Symposium on Haptic Audio-Visual Environments and Games (HAVE '10), pp. 163–167, October 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. N. H. Dardas and N. D. Georganas, “Real-time hand gesture detection and recognition using bag-of-features and support vector machine techniques,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 11, pp. 3592–3607, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. Y. Chen and K. Tseng, “Multiple-angle hand gesture recognition by fusing SVM classifiers,” in Proceedings of the 3rd IEEE International Conference on Automation Science and Engineering (IEEE CASE '07), pp. 527–530, September 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. O. Rashid, A. Al-Hamadi, and B. Michaelis, “A framework for the integration of gesture and posture recognition using HMM and SVM,” in Proceedings of the IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS '09), vol. 4, pp. 572–577, November 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. K. K. Biswas and S. K. Basu, “Gesture recognition using Microsoft Kinect,” in Proceedings of the 5th International Conference on Automation, Robotics and Applications (ICARA '11), pp. 100–103, December 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. Z. He, L. Jin, L. Zhen, and J. Huang, “Gesture recognition based on 3D accelerometer for cell phones interaction,” in Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems (APCCAS '08), pp. 217–220, December 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. S. H. Lee, M. K. Sohn, D. J. Kim, B. Kim, and H. Kim, “Smart tv interaction system using face and hand gesture recognition,” in Proceedings of the IEEE International Conference on Consumer Electronics (ICCE '13), pp. 173–174, 2013.
  98. R. C. B. Madeo, C. A. M. Lima, and S. M. Peres, “Gesture unit segmentation using support vector machines: segmenting gestures from rest positions,” in Proceedings of the 28th Annual ACM Symposium on Applied Computing (SAC '13), pp. 46–52, ACM, New York, NY, USA, 2013.
  99. Y. Ren and F. Zhang, “Hand gesture recognition based on MEB-SVM,” in Proceedings of the International Conference on Embedded Software and System (ICESS '09), pp. 344–349, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. J. Wu, G. Pan, D. Zhang, G. Qi, and S. Li, “Gesture recognition with a 3-D accelerometer,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5585, pp. 25–38, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. L. Yun and Z. Peng, “An automatic hand gesture recognition system based on Viola-Jones method and SVMs,” in Proceedings of the 2nd International Workshop on Computer Science and Engineering (WCSE '09), vol. 2, pp. 72–76, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. W.-Y. Loh, “Classification and regression trees,” Wiley Interdisciplinary Reviews, vol. 1, no. 1, pp. 14–23, 2011. View at Google Scholar
  103. J. R. Quinlan, C4.5: Programs for Machine Learning (Morgan Kaufmann Series in Machine Learning), Morgan Kaufmann, Boston, Mass, USA, 1st edition, 1993.
  104. S. Nisar, A. A. Khan, and M. Y. Javed, “A statistical feature based decision tree approach for hand gesture recognition,” in Proceedings of the 7th International Conference on Frontiers of Information Technology (FIT '09), vol. 27, pp. 1–6, ACM, New York, NY, USA, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Jeon, S. Yang, and Z. Bien, “User adaptive hand gesture recognition using multivariate fuzzy decision tree and fuzzy garbage model,” in Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 474–479, August 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. X. Zhang, X. Chen, Y. Li, V. Lantz, K. Wang, and J. Yang, “A framework for hand gesture recognition based on accelerometer and EMG sensors,” IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, vol. 41, no. 6, pp. 1064–1076, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. G. Fang, W. Gao, and D. Zhao, “Large vocabulary sign language recognition based on hierarchical decision trees,” in Proceedings of the 5th International Conference on Multimodal Interfaces (ICMI '03), pp. 125–131, ACM, New York, NY, USA, November 2003. View at Scopus
  108. S. Oprisescu, C. Rasche, and B. Su, “Automatic static hand gesture recognition using tof cameras,” in Proceedings of the 20th European Signal Processing Conference (EUSIPCO '12), pp. 2748–2751, 2012.
  109. L. Miranda, T. Vieira, D. Martinez, T. Lewiner, A. W. Vieira, and M. F. M. Campos, “Real-time gesture recognition from depth data through key poses learning and decision forests,” in Proceedings of the 25th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI '12), pp. 268–275, 2012.
  110. C. Keskin, F. Kirac, Y. Kara, and L. Akarun, “Hand pose estimation and hand shape classification using multi-layered randomized decision forests,” in Proceedings of the 12th European Conference on Computer Vision (ECCV '12), A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid, Eds., vol. 7577 of Lecture Notes in Computer Science, pp. 852–863, Springer, Berlin, Germany, 2012.
  111. F. Negin, F. Ozdemir, C. Akgul, K. Yuksel, and A. Ercil, “A decision forest based feature selection framework for action recognition from rgb-depth cameras,” in Image Analysis and Recognition, M. Kamel and A. Campilho, Eds., vol. 7950 of Lecture Notes in Computer Science, pp. 648–657, Springer, Berlin, Germany, 2013. View at Google Scholar
  112. M. Hoffman, P. Varcholik, and J. J. LaViola Jr., “Breaking the status quo: improving 3D gesture recognition with spatially convenient input devices,” in Proceedings of the 2010 IEEE Virtual Reality Conference (VR '10), pp. 59–66, IEEE Computer Society, Washington, DC, USA, March 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. S. Kratz and M. Rohs, “A $3 gesture recognizer: simple gesture recognition for devices equipped with 3D acceleration sensors,” in Proceedings of the 14th ACM International Conference on Intelligent User Interfaces (IUI '10), pp. 341–344, ACM, New York, NY, USA, February 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. S. Kratz and M. Rohs, “Protractor3D: a closed-form solution to rotation-invariant 3D gestures,” in Proceedings of the 15th ACM International Conference on Intelligent User Interfaces (IUI '11), pp. 371–374, ACM, New York, NY, USA, February 2011. View at Publisher · View at Google Scholar · View at Scopus
  115. A. Criminisi, J. Shotton, and E. Konukoglu, “Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning,” Foundations and Trends in Computer Graphics and Vision, vol. 7, no. 2-3, pp. 81–227, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. A. Criminisi and J. Shotton, Decision Forests for Computer Vision and Medical Image Analysis, Springer, New York, NY, USA, 2013.
  117. S. Fothergill, H. Mentis, P. Kohli, and S. Nowozin, “Instructing people for training gestural interactive systems,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '12), pp. 1737–1746, ACM, New York, NY, USA, 2012.
  118. M. Lech, B. Kostek, A. Czyzewski, and editors, “Examining classifiers applied to static hand gesture recognition in novel sound mixing systemvolume,” in Multimedia and Internet Systems: Theory and Practice, A. Zgrzywa, K. Choros, and A. Sieminski, Eds., vol. 183 of Advances in Intelligent Systems and Computing, pp. 77–86, Springer, Berlin, Germany, 2013. View at Google Scholar
  119. K. R. Konda, A. Königs, H. Schulz, and D. Schulz, “Real time interaction with mobile robots using hand gestures,” in Proceedings of the 7th Annual ACM/IEEE International Conference on Human-Robot Interaction (HRI '12), pp. 177–178, ACM, New York, NY, USA, March 2012. View at Publisher · View at Google Scholar · View at Scopus
  120. K. Murakami and H. Taguchi, “Gesture recognition using recurrent neural networks,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '91), pp. 237–242, ACM, New York, NY, USA, 1991.
  121. Z. Li and R. Jarvis, “Real time hand gesture recognition using a range camera,” in Proceedings of the Australasian Conference on Robotics and Automation (ACRA '09), pp. 21–27, December 2009. View at Scopus
  122. X. Liu and K. Fujimura, “Hand gesture recognition using depth data,” in Proceedings of the 6th IEEE International Conference on Automatic Face and Gesture Recognition (FGR '04), pp. 529–534, May 2004. View at Scopus
  123. P. Hong, M. Turk, and T. S. Huang, “Gesture modeling and recognition using finite state machines,” in Proceedings of the 4th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 410–415, 2000.
  124. D. Rubine, “Specifying gestures by example,” in Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '91), pp. 329–337, ACM, New York, NY, USA, 1991.
  125. S. Cheema, M. Hoffman, and J. J. LaViola Jr., “3D gesture classification with linear acceleration and angular velocity sensing devices for video games,” Entertainment Computing, vol. 4, no. 1, pp. 11–24, 2013. View at Google Scholar
  126. S. Cheema and J. J. LaViola Jr., “Wizard of Wii: toward understanding player experience in first person games with 3D gestures,” in Proceedings of the 6th International Conference on the Foundations of Digital Games (FDG '11), pp. 265–267, ACM, New York, NY, USA, July 2011. View at Publisher · View at Google Scholar · View at Scopus
  127. J. O. Wobbrock, A. D. Wilson, and Y. Li, “Gestures without libraries, toolkits or training: a $1 recognizer for user interface prototypes,” in Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology (UIST '07), pp. 159–168, ACM, New York, NY, USA, October 2007. View at Publisher · View at Google Scholar · View at Scopus
  128. S. Kratz and M. Rohs, “The $3 recognizer: simple 3D gesture recognition on mobile devices,” in Proceedings of the 14th ACM International Conference on Intelligent User Interfaces (IUI '10), pp. 419–420, ACM, New York, NY, USA, February 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. Y. Li, “Protractor: a fast and accurate gesture recognizer,” in Proceedings of the 28th Annual CHI Conference on Human Factors in Computing Systems (CHI '10), pp. 2169–2172, ACM, New York, NY, USA, April 2010. View at Publisher · View at Google Scholar · View at Scopus
  130. S. Kratz, M. Rohs, and G. Essl, “Combining acceleration and gyroscope data for motion gesture recognition using classifiers with dimensionality constraints,” in Proceedings of the 2013 international conference on Intelligent user interfaces (IUI '13), pp. 173–178, ACM, New York, NY, USA, 2013.
  131. B. Williamson, C. Wingrave, J. LaViola, T. Roberts, and P. Garrity, “Natural full body interaction for navigation in dismounted soldier training,” in Proceedings of the Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC '11), pp. 2103–2110, 2011.
  132. J. N. Bott, J. G. Crowley, and J. J. LaViola Jr., “Exploring 3D gestural interfaces for music creation in video games,” in Proceedings of the 4th International Conference on the Foundations of Digital Games (ICFDG '09), pp. 18–25, ACM, New York, NY, USA, April 2009. View at Publisher · View at Google Scholar · View at Scopus
  133. E. Charbonneau, A. Miller, C. Wingrave, and J. J. LaViola Jr., “Understanding visual interfaces for the next generation of dance-based rhythm video games,” in Proceedings of the 2009 ACM SIGGRAPH Symposium on Video Games (Sandbox '09), pp. 119–126, ACM, New York, NY, USA, August 2009. View at Scopus
  134. J. P. Wachs, M. Kölsch, H. Stern, and Y. Edan, “Vision-based hand-gesture applications,” Communications of the ACM, vol. 54, no. 2, pp. 60–71, 2011. View at Publisher · View at Google Scholar · View at Scopus
  135. H. Kang, C. W. Lee, and K. Jung, “Recognition-based gesture spotting in video games,” Pattern Recognition Letters, vol. 25, no. 15, pp. 1701–1714, 2004. View at Publisher · View at Google Scholar · View at Scopus
  136. J. Payne, P. Keir, J. Elgoyhen et al., “Gameplay issues in the design of spatial 3D gestures for video games,” in Proceedings of the CHI '06 Extended Abstracts on Human Factors in Computing Systems (CHI EA '06), pp. 1217–1222, ACM, New York, NY, USA, 2006.
  137. T. Starner, B. Leibe, B. Singletary, and J. Pair, “MIND-WARPING: towards creating a compelling collaborative augmented reality game,” in Proceedings of the 5th International Conference on Intelligent User Interfaces (IUI '00), pp. 256–259, ACM, New York, NY, USA, January 2000. View at Scopus
  138. A. Bigdelou, L. A. Schwarz, and N. Navab, “An adaptive solution for intra-operative gesture-based human-machine interaction,” in Proceedings of the 17th ACM International Conference on Intelligent User Interfaces (IUI '12), pp. 75–83, ACM, New York, NY, USA, February 2012. View at Publisher · View at Google Scholar · View at Scopus
  139. L. A. Schwarz, A. Bigdelou, and N. Navab, “Learning gestures for customizable human-computer interaction in the operating room,” in Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI '11), G. Fichtinger, A. Martel, and T. Peters, Eds., vol. 6891 of Lecture Notes in Computer Science, pp. 129–136, Springer, Berlin, Germany, 2011.
  140. K. Pfeil, S. L. Koh, and J. LaViola, “Exploring 3D gesture metaphors for interaction with unmanned aerial vehicles,” in Proceedings of the 2013 International Conference on Intelligent User Interfaces (IUI '13), pp. 257–266, ACM, New York, NY, USA, 2013.
  141. B. Burger, I. Ferrané, F. Lerasle, and G. Infantes, “Two-handed gesture recognition and fusion with speech to command a robot,” Autonomous Robots, pp. 1–19, 2011. View at Publisher · View at Google Scholar · View at Scopus
  142. M. Sigalas, H. Baltzakis, and P. Trahanias, “Gesture recognition based on arm tracking for human-robot interaction,” in Proceedings of the 23rd IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems (IROS '10), pp. 5424–5429, October 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. M. Van Den Bergh, D. Carton, R. De Nijs et al., “Real-time 3D hand gesture interaction with a robot for understanding directions from humans,” in Proceedings of the 20th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN '11), pp. 357–362, August 2011. View at Publisher · View at Google Scholar · View at Scopus
  144. A. Riener, “Gestural interaction in vehicular applications,” Computer, vol. 45, no. 4, Article ID 6165247, pp. 42–47, 2012. View at Publisher · View at Google Scholar · View at Scopus
  145. S. H. Lee, M. K. Sohn, D. J. Kim, B. Kim, and H. Kim, “Smart tv interaction system using face and hand gesture recognition,” in Proceedings of the IEEE International Conference on Consumer Electronics (ICCE '13), pp. 173–174, IEEE, 2013.
  146. M. Takahashi, M. Fujii, M. Naemura, and S. Satoh, “Human gesture recognition system for TV viewing using time-of-flight camera,” Multimedia Tools and Applications, vol. 62, no. 3, pp. 761–783, 2013. View at Publisher · View at Google Scholar · View at Scopus
  147. H. I. Stern, J. P. Wachs, and Y. Edan, “Designing hand gesture vocabularies for natural interaction by combining psycho-physiological and recognition factors,” International Journal of Semantic Computing, vol. 2, no. 1, pp. 137–160, 2008. View at Google Scholar
  148. S. Z. Masood, C. Ellis, A. Nagaraja, M. F. Tappen, J. J. Laviola, and R. Sukthankar, “Measuring and reducing observational latency when recognizing actions,” in Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCV '11), pp. 422–429, November 2011. View at Publisher · View at Google Scholar · View at Scopus
  149. M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-aware systems,” International Journal of Ad Hoc and Ubiquitous Computing, vol. 2, no. 4, pp. 263–277, 2007. View at Publisher · View at Google Scholar · View at Scopus
  150. W. Liu, X. Li, and D. Huang, “A survey on context awareness,” in Proceedings of the International Conference on Computer Science and Service System (CSSS '11), pp. 144–147, June 2011. View at Publisher · View at Google Scholar · View at Scopus
  151. A. Saeed and T. Waheed, “An extensive survey of context-aware middleware architectures,” in Proceedings of the IEEE International Conference on Electro/Information Technology (EIT '10), pp. 1–6, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  152. D. Han, L. Bo, and C. Sminchisescu, “Selection and context for action recognition,” in Proceedings of the 12th International Conference on Computer Vision (ICCV '09), pp. 1933–1940, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  153. D. J. Moore, I. A. Essa, and M. H. Hayes, “Object spaces: context management for human activity recognition,” in Proceedings of 2nd International Conference on Audio-Vision-based Person Authentication, 1998.
  154. D. J. Moore, I. A. Essa, and M. H. Hayes III, “Exploiting human actions and object context for recognition tasks,” in Proceedings of the 1999 7th IEEE International Conference on Computer Vision (ICCV'99), pp. 80–86, September 1999. View at Scopus