Table of Contents
ISRN Biotechnology
Volume 2013, Article ID 515091, 5 pages
http://dx.doi.org/10.5402/2013/515091
Research Article

Biosynthesis of Gold Nanoparticles Using Fusarium oxysporum f. sp. cubense JT1, a Plant Pathogenic Fungus

1Department of Biotechnology, P. D. Patel Institute of Applied Science, Charotar University of Science & Technology, Education Campus Changa, Changa 388421, India
2Ashok and Rita Patel Institute of Integrated Study & Research in Biotechnology and Allied Sciences, New Vallabh Vidyanagar 388 121, India

Received 6 September 2012; Accepted 15 October 2012

Academic Editors: B. Castiglioni, E. Formentin, and H. S. Garcia

Copyright © 2013 Janki N. Thakker et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Kumar, S. Mandal, P. R. Selvakannan, R. Pasricha, A. B. Mandale, and M. Sastry, “Investigation into the interaction between surface-bound alkylamines and gold nanoparticles,” Langmuir, vol. 19, no. 15, pp. 6277–6282, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. M. F. Lengke, M. E. Fleet, and G. Southam, “Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-Thiosulfate and gold(III)-chloride complexes,” Langmuir, vol. 22, no. 6, pp. 2780–2787, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. T. R. Klaus-Joerger, R. Joerger, E. Olsson, and C. G. Granqvist, “Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science,” Trends in Biotechnology, vol. 19, no. 1, pp. 15–20, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Ankamwar, M. Chaudhary, and M. Sastry, “Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing,” Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, vol. 35, no. 1, pp. 19–26, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Mandal, M. E. Bolander, D. Mukhopadhyay, G. Sarkar, and P. Mukherjee, “The use of microorganisms for the formation of metal nanoparticles and their application,” Applied Microbiology and Biotechnology, vol. 69, no. 5, pp. 485–492, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. S. A. C. Carabineiro, P. B. Tavares, and J. L. Figueired, “Gold on oxide-doped alumina supports as catalysts for CO oxidation,” Applied Nanoscience, vol. 2, pp. 35–46, 2012. View at Google Scholar
  7. M. Gericke and A. Pinches, “Microbial production of gold nanoparticles,” Gold Bulletin, vol. 39, no. 1, pp. 22–28, 2006. View at Google Scholar · View at Scopus
  8. J. Huang, Q. Li, D. Sun et al., “Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf,” Nanotechnology, vol. 18, no. 10, Article ID 105104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry, “Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract,” Biotechnology Progress, vol. 22, no. 2, pp. 577–583, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. S. S. Shankar, A. Rai, A. Ahmad, and M. Sastry, “Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth,” Journal of Colloid and Interface Science, vol. 275, no. 2, pp. 496–502, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Klaus-Joerger, E. Olsson, and C. G. Granqvist, “Silver-based crystalline nanoparticles, microbially fabricated,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 24, pp. 13611–13614, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Mukherjee, A. Ahmad, D. Mandal et al., “Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle Synthesis,” Nano Letters, vol. 1, no. 10, pp. 515–519, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. J. N. Thakker, N. Patel, and I. L. Kothari, “Fusarium oxysporumderived elicitor induced enzymological changes in banana leaves against Fusarium wilt disease,” Journal of Mycology and Plant Pathology, vol. 37, pp. 510–513, 2007. View at Google Scholar
  14. J. N. Thakker, P. Patel, and P. C. Dhandhukia, “Induction of defense related enzymes in susceptible variety of bananas: role of Fusarium derived elictors,” Archives Of Phytopathology And Plant Protection, vol. 44, pp. 1976–1984, 2011. View at Google Scholar
  15. A. Ahmad, P. Mukherjee, S. Senapati et al., “Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum,” Colloids and Surfaces B, vol. 28, no. 4, pp. 313–318, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. R. A. Baker and J. H. Tatum, “Novel anthraquinones from stationary cultures of Fusarium oxysporum,” Journal of Fermentation and Bioengineering, vol. 85, no. 4, pp. 359–361, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Durán, P. D. Marcato, O. L. Alves, G. I. H. De Souza, and E. Esposito, “Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains,” Journal of Nanobiotechnology, vol. 3, article 8, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Sileikaite, I. Prosycevas, J. Pulso, A. Juraitis, and A. Guobiene, “Analysis of silver nanoparticles produced by chemical reduction of silver salt solution,” Journal of Materials Science, vol. 12, pp. 287–291, 2006. View at Google Scholar
  19. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Advanced Materials, vol. 16, no. 19, pp. 1685–1706, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. A. G. Tkachenko, H. Xie, D. Coleman et al., “Multifunctional gold nanoparticle-peptide complexes for nuclear targeting,” Journal of the American Chemical Society, vol. 125, no. 16, pp. 4700–4701, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Henglein, “Physicochemical properties of small metal particles in solution: “Microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition,” Journal of Physical Chemistry, vol. 97, no. 21, pp. 5457–5471, 1993. View at Google Scholar · View at Scopus
  22. A. Upadhyay, K. Upadhyay, and N. Nath, Biophysical Chemistry Principles & Techniques Handbook, Himalaya Publishing House, New Delhi, India, 2003.
  23. A. Gole, C. Dash, S. R. Sainkar, A. B. Mandale, M. Rao, and M. Sastry, “Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum,” Analytical Chemistry, vol. 72, pp. 1401–1403, 2000. View at Google Scholar
  24. T. Hamouda, A. Myc, B. Donovan, A. Y. Shih, J. D. Reuter, and J. R. Baker, “A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi,” Microbiological Research, vol. 156, no. 1, pp. 1–7, 2001. View at Google Scholar · View at Scopus